ASSORTATIVE MATCHING WITH LARGE FIRMS

Jan Eeckhout1 and Philipp Kircher2

1UCL and UPF 2EUI

LACEA, Medellín

November 10, 2016
Motivation

- Two cornerstones of analyzing firms in Macro, Labor, IO, Trade,...
 1. Firm size: productive firms are larger and produce more
 2. Sorting of workers: firms compete for skilled workers
- These two aspects are usually treated independently
 2. Matching: one-to-one (e.g. Becker 1973) → extensive margin
- Needed: Trade-off better workers vs. more workers
Motivation

- Two cornerstones of analyzing firms in Macro, Labor, IO, Trade,...
 1. Firm size: productive firms are larger and produce more
 2. Sorting of workers: firms compete for skilled workers
- These two aspects are usually treated independently
 2. Matching: one-to-one (e.g. Becker 1973) → extensive margin
- Needed: Trade-off better workers vs. more workers

→ Apply theory to technological change: SBTC vs. QBTC
The Model

Intensive and Extensive Margin

- **Population**
 - Workers of type $x \in X = [\underline{x}, \overline{x}]$, distribution $H^w(x)$
 - Firms of types $y \in Y = [\underline{y}, \overline{y}]$, distribution $H^f(y)$

- **Production of firm y** $F(x, y, l_x, r_x)$
 - l_x workers of type x, r_x fraction of firm’s resources
 - F increasing in all, concave in last two arguments
 - F constant returns to scale in last two arguments

 \Rightarrow Denote:

 $$f(x, y, \theta) = rF \left(x, y, \frac{l}{r}, 1 \right), \text{ where } \theta = \frac{l}{r}$$
The Model
Intensive and Extensive Margin

• **Population**
 - Workers of type \(x \in X = [\underline{x}, \bar{x}] \), distribution \(H^w(x) \)
 - Firms of types \(y \in Y = [\underline{y}, \bar{y}] \), distribution \(H^f(y) \)

• **Production of firm** \(y \) \(F(x, y, l_x, r_x) \)
 - \(l_x \) workers of type \(x \), \(r_x \) fraction of firm’s resources
 - \(F \) increasing in all, concave in last two arguments
 - \(F \) constant returns to scale in last two arguments

 \[\Rightarrow \text{Denote:} \]
 \[f(x, y, \theta) = rF \left(x, y, \frac{l}{r}, 1 \right), \text{ where } \theta = \frac{l}{r} \]

 • Key assumption: **no peer effects** \(\Rightarrow \) satisfies GS

 \[\Rightarrow \text{Total output: } \int F(x, y, l_x, r_x)dx \]
The Model
Intensive and Extensive Margin

- **Population**
 - Workers of type \(x \in X = [\underline{x}, \overline{x}] \), distribution \(H^w(x) \)
 - Firms of types \(y \in Y = [\underline{y}, \overline{y}] \), distribution \(H^f(y) \)

- **Production of firm** \(y \) \(F(x, y, l_x, r_x) \)
 - \(l_x \) workers of type \(x \), \(r_x \) fraction of firm's resources
 - \(F \) increasing in all, concave in last two arguments
 - \(F \) constant returns to scale in last two arguments
 \(\Rightarrow \) Denote:
 \[
 f(x, y, \theta) = rF \left(x, y, \frac{l}{r}, 1 \right), \text{ where } \theta = \frac{l}{r}
 \]

 - Key assumption: no peer effects \(\Rightarrow \) satisfies GS

- **Preferences**
 - transferable utility (additive in output goods and numeraire)
Hedonic wage schedule $w(x)$ taken as given.

- **Optimization:**
 - Firms maximize: $\max_{l_x, r_x} \int [F(x, y, l_x, r_x) - w(x)l_x]dx$
 \[\Rightarrow r_x > 0 \text{ only if } \left(x, \frac{l_x}{r_x} \right) = \arg \max f(x, y, \theta) - \theta w(x) \quad (\star) \]

- **Feasible Resource Allocation (market clearing) under PAM:**
 \[\int_X^{\bar{x}} h_w(s) ds = \int_{\mu(x)}^{\bar{y}} \theta(s) h_f(s) ds \]

- **Competitive Equilibrium:** optimality + market clearing
Assortative Matching

Proposition (Condition for PAM)

A necessary condition to have equilibria with PAM is that

\[F_{xy}F_{lr} \geq F_{yl}F_{xr} \]

holds along the equilibrium path. The reverse inequality entails NAM.
Assortative Matching

\[F_{xy} F_{lr} \geq F_{yl} F_{xr} \]

- Interpretation \((F_{lr} > 0 \text{ by assumption})\):
 1. \(F_{xy} > 0\): better manager produces more with better workers (Becker)
 2. \(F_{yl} > 0\): better managers can manage more people (as in Lucas)
 3. \(F_{xr} > 0\): better workers produce more with manager time
Assortative Matching

\[F_{xy} F_{lr} \geq F_{yl} F_{xr} \]

- Interpretation \((F_{lr} > 0 \text{ by assumption})\):
 1. \(F_{xy} > 0\): bet. manag. produce more w/ bet. workers (Becker)
 2. \(F_{yl} > 0\): bet. manag., larger span of control (as in Lucas)
 3. \(F_{xr} > 0\): bet. workers produce more w/ manag. time

- Quantity-quality trade-off by firm \(y\) with resources \(r\):
 1. \(F_{xy}\): better manager manages quality workers better vs.
 2. \(F_{yl}\): better managers can manage more people

\[\Rightarrow \text{Marginal increase of better } \geq \text{ marginal impact of more workers} \]
Sketch of Proof of PAM-Condition

Assume PAM allocation with resources on \((x, \mu(x), \theta(x))\). Must be optimal, i.e., maximizes:

\[
\max_{x, \theta} f(x, \mu(x), \theta) - \theta w(x).
\]

First order conditions:

\[
\begin{align*}
 f_\theta(x, \mu(x), \theta(x)) - w(x) &= 0 \\
 f_x(x, \mu(x), \theta(x)) - \theta(x) w'(x) &= 0
\end{align*}
\]

The Hessian is

\[
Hess = \begin{pmatrix}
 f_{\theta \theta} & f_{\theta x} - w'(x) \\
 f_{\theta x} - w'(x) & f_{xx} - \theta w''(x)
\end{pmatrix}.
\]

Second order condition requires \(|Hess| \geq 0\):

\[
f_{\theta \theta} [f_{xx} - \theta w''(x)] - (f_{\theta x} - w'(x))^2 \geq 0
\]

Differentiate FOC’s with respect to \(x\), substitute:

\[
-\mu'(x) [f_{\theta \theta} f_{xy} - f_{y \theta} f_{x \theta} + f_{y \theta} f_x / \theta] \geq 0
\]

Positive sorting means \(\mu'(x) > 0\), requiring \([\cdot] < 0\) and after rearranging:

\[
F_{xy} F_{lr} \geq F_{yl} F_{xr}
\]
Special Cases

Efficiency Units of Labor

- Skill “=” Quantity: \(F(x, y, l, r) = \tilde{F}(y, xl, r) \Rightarrow F_{xy}F_{lr} = F_{yl}F_{xr} \)
Special Cases

Efficiency Units of Labor

- Skill "=" Quantity: \(F(x, y, l, r) = \tilde{F}(y, xl, r) \quad \Rightarrow \quad F_{xy} F_{lr} = F_{yl} F_{xr} \)

Multiplicative Separability

- \(F(x, y, l, r) = A(x, y) B(l, r) \) sorting if \(\frac{AA_{xy}}{A_x A_y} \frac{BB_{lr}}{B_l B_r} \geq 1 \)

- If \(B \) is CES with elast. of substitution \(\epsilon \): \(\frac{AA_{xy}}{A_x A_y} \geq \epsilon \) (root-sm)
Special Cases

Efficiency Units of Labor
- Skill “=” Quantity: $F(x, y, l, r) = \tilde{F}(y, xl, r) \Rightarrow F_{xy}F_{lr} = F_{yl}F_{xr}$

Multiplicative Separability
- $F(x, y, l, r) = A(x, y)B(l, r)$ sorting if $\frac{AA_{xy}}{A_xA_y} \frac{BB_{lr}}{B_lB_r} \geq 1$
- If B is CES with elast. of substitution ϵ: $\frac{AA_{xy}}{A_xA_y} \geq \epsilon$ (root-sm)

Becker’s one-on-one matching
- $F(x, y, \min\{l, r\}, \min\{r, l\}) = F(x, y, 1, 1) \min\{l, r\}$,
- Like inelastic CES ($\epsilon \rightarrow 0$), so sorting if $F_{12} \geq 0$
Special Cases

Efficiency Units of Labor

- Skill “=” Quantity: \(F(x, y, l, r) = \tilde{F}(y, x, l, r) \Rightarrow F_{xy} F_{lr} = F_{yl} F_{xr} \)

Multiplicative Separability

- \(F(x, y, l, r) = A(x, y)B(l, r) \) sorting if \(\frac{AA_{xy}}{A_x A_y} \frac{BB_{lr}}{B_l B_r} \geq 1 \)
- If \(B \) is CES with elast. of substitution \(\epsilon \): \(\frac{AA_{xy}}{A_x A_y} \geq \epsilon \) (root-sm)

Becker’s one-on-one matching

- \(F(x, y, \min\{l, r\}, \min\{r, l\}) = F(x, y, 1, 1) \min\{l, r\} \)
- Like inelastic CES (\(\epsilon \to 0 \)), so sorting if \(F_{12} \geq 0 \)

Sattinger’s span of control model

- \(F(x, y, l, r) = \min \left\{ \frac{r}{t(x, y)}, l \right\} \); write as CES between both arguments
- Our condition converges for inelastic case to log-supermod. in qualities
Special Cases

Efficiency Units of Labor

• Skill “=” Quantity: \(F(x, y, l, r) = \tilde{F}(y, xl, r) \Rightarrow F_{xy}F_{lr} = F_{yl}F_{xr} \)

Multiplicative Separability

• \(F(x, y, l, r) = A(x, y)B(l, r) \) sorting if \(\frac{AA_{xy}}{A_xA_y} \frac{BB_{lr}}{B_lB_r} \geq 1 \)

• If \(B \) is CES with elast. of substitution \(\epsilon: \frac{AA_{xy}}{A_xA_y} \geq \epsilon \) (root-sm)

Becker’s one-on-one matching

• \(F(x, y, \min\{l, r\}, \min\{r, l\}) = F(x, y, 1, 1) \min\{l, r\} \)

• Like inelastic CES (\(\epsilon \to 0 \)), so sorting if \(F_{12} \geq 0 \)

Sattinger’s span of control model

• \(F(x, y, l, r) = \min \left\{ \frac{r}{t(x, y)}, l \right\} \); write as CES between both arguments

• Our condition converges for inelastic case to log-supermod. in qualities

Extension of Lucas’ span of control model

• \(F(x, y, l, r) = yg(x, l/r)r \), sorting only if good types work less well together \((-g_1g_{22} \geq -g_2g_{12})\).
Special Cases

Efficiency Units of Labor

- Skill “=” Quantity: \(F(x, y, l, r) = \tilde{F}(y, xl, r) \Rightarrow F_{xy}F_{lr} = F_{yl}F_{xr} \)

Multiplicative Separability

- \(F(x, y, l, r) = A(x, y)B(l, r) \) sorting if \(\frac{AA_{xy}}{A_xA_y} \frac{BB_{lr}}{B_lB_r} \geq 1 \)
- If \(B \) is CES with elast. of substitution \(\epsilon \): \(\frac{AA_{xy}}{A_xA_y} \geq \epsilon \) (root-sm)

Becker’s one-on-one matching

- \(F(x, y, \text{min}\{l, r\}, \text{min}\{r, l\}) = F(x, y, 1, 1) \text{min}\{l, r\} \)
- Like inelastic CES \((\epsilon \to 0) \), so sorting if \(F_{12} \geq 0 \)

Sattinger’s span of control model

- \(F(x, y, l, r) = \min \left\{ \frac{r}{t(x,y)}, l \right\} \); write as CES between both arguments
- Our condition converges for inelastic case to log-supermod. in qualities

Extension of Lucas’ span of control model

- \(F(x, y, l, r) = yg(x, l/r)r \), sorting only if good types work less well together \((-g_1g_{22} \geq -g_2g_{12}) \).

Spatial sorting in mono-centric city:

- \(F(x, y, l, r) = l(xg(y) + v(r/l)) \Rightarrow \text{higher earners in center.} \)
Proposition

Under assortative matching (symmetric distributions of x, y)

\[
PAM : \quad \theta'(x) = \frac{F_{yl} - F_{xr}}{F_{lr}}, \quad \mu'(x) = \frac{1}{\theta(x)}, \quad w'(x) = \frac{F_x}{\theta(x)},
\]

\[
NAM : \quad \theta'(x) = -\frac{F_{yl} + F_{xr}}{F_{lr}}, \quad \mu'(x) = \frac{-1}{\theta(x)}, \quad w'(x) = \frac{F_x}{\theta(x)},
\]
PROPOSITION

Under assortative matching (symmetric distributions of x, y)

\[PAM : \quad \theta'(x) = \frac{F_{yl} - F_{xr}}{F_{lr}}; \quad \mu'(x) = \frac{1}{\theta(x)}; \quad w'(x) = \frac{F_x}{\theta(x)}, \]

\[NAM : \quad \theta'(x) = -\frac{F_{yl} + F_{xr}}{F_{lr}}; \quad \mu'(x) = \frac{-1}{\theta(x)}; \quad w'(x) = \frac{F_x}{\theta(x)}, \]

COROLLARY

Under assortative matching, better firms hire more workers if and only if along the equilibrium path

\[F_{yl} > F_{xr} \text{ under PAM, and } -F_{yl} < F_{xr} \text{ under NAM.} \]
Application: SBTC vs. QBTC

- How has technology changed: 1996 → 2010?
- Estimate technological parameters that affect size and sorting

\[F(x, y, l, 1) = \left(\omega_x x^{\frac{\sigma-1}{\sigma}} + \omega_y y^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}} l^{\omega_l}. \]

- Distribution of types \(x \) and \(y \) assumed log-normal
- Estimate parameters \(\omega_x, \omega_y, \omega_l, \sigma \) with parameters of type distributions to match 3 moment conditions:
 1. size-wage
 2. size-profits
 3. size distribution
- German administrative data for matched employer-employees
Results
Targeted Moments 1996

Wages-firm size – Profits-firm size – Firm size distribution
Results
Targeted Moments 2010

Wages-firm size — Profits-firm size — Firm size distribution
Results

Estimated Parameters

\[F(x, y, l, 1) = \left(\omega_x x^{\frac{\sigma - 1}{\sigma}} + \omega_y y^{\frac{\sigma - 1}{\sigma}} \right)^{\frac{\sigma}{\sigma - 1}} \]

<table>
<thead>
<tr>
<th></th>
<th>1996</th>
<th>2010</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\omega_x)</td>
<td>0.026</td>
<td>0.060</td>
<td>131.6%</td>
</tr>
<tr>
<td>(\omega_y)</td>
<td>0.974</td>
<td>0.964</td>
<td>-1.1%</td>
</tr>
<tr>
<td>(\omega_l)</td>
<td>0.123</td>
<td>0.217</td>
<td>76.1%</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>0.998</td>
<td>0.982</td>
<td>-1.6%</td>
</tr>
<tr>
<td>Distributions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x)</td>
<td>(\mathcal{LN}(2.49, 1.35))</td>
<td>(\mathcal{LN}(2.69, 1.35))</td>
<td></td>
</tr>
<tr>
<td>(y)</td>
<td>(\mathcal{LN}(0.08, 1.57))</td>
<td>(\mathcal{LN}(0.03, 1.54))</td>
<td></td>
</tr>
</tbody>
</table>
The Distributions of Worker Types x and Firm Types y.

Results

Estimated Parameters
Results

Estimated Parameters

\[F(x, y, l, 1) = \left(\omega_x x^{\frac{\sigma-1}{\sigma}} + \omega_y y^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}} l^{\omega_l} \]

<table>
<thead>
<tr>
<th>Technology</th>
<th>1996</th>
<th>2010</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega_x)</td>
<td>0.026</td>
<td>0.060</td>
<td>131.6%</td>
</tr>
<tr>
<td>(\omega_y)</td>
<td>0.974</td>
<td>0.964</td>
<td>-1.1%</td>
</tr>
<tr>
<td>(\omega_l)</td>
<td>0.123</td>
<td>0.217</td>
<td>76.1%</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>0.998</td>
<td>0.982</td>
<td>-1.6%</td>
</tr>
</tbody>
</table>

| Distributions | | |
|----------------|-----------------|
| \(x \) | \(\mathcal{LN}(2.49, 1.35) \) | \(\mathcal{LN}(2.69, 1.35) \) |
| \(y \) | \(\mathcal{LN}(0.08, 1.57) \) | \(\mathcal{LN}(0.03, 1.54) \) |
\begin{itemize}
 \item $\sigma < 1 \Rightarrow \text{PAM}$
 \item $\sigma \approx 1$, technology can be approximated by the Cobb-Douglas
 \[F(x, y, l, 1) \approx x^{\omega_x} y^{\omega_y} l^{\omega_l}. \]
 but not $\sigma = 1$: No sorting!
\end{itemize}
Results

Estimated Parameters

\[F(x, y, l, 1) = \left(\omega_x x^{\frac{\sigma-1}{\sigma}} + \omega_y y^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}} l^l \]

<table>
<thead>
<tr>
<th>Technology</th>
<th>1996</th>
<th>2010</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega_x)</td>
<td>0.026</td>
<td>0.060</td>
<td>131.6%</td>
</tr>
<tr>
<td>(\omega_y)</td>
<td>0.974</td>
<td>0.964</td>
<td>-1.1%</td>
</tr>
<tr>
<td>(\omega_l)</td>
<td>0.123</td>
<td>0.217</td>
<td>76.1%</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>0.998</td>
<td>0.982</td>
<td>-1.6%</td>
</tr>
</tbody>
</table>

Distributions

<table>
<thead>
<tr>
<th></th>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(\mathcal{LN}(2.49, 1.35))</td>
<td>(\mathcal{LN}(2.69, 1.35))</td>
</tr>
<tr>
<td>(y)</td>
<td>(\mathcal{LN}(0.08, 1.57))</td>
<td>(\mathcal{LN}(0.03, 1.54))</td>
</tr>
</tbody>
</table>
Results

Technological Change

- $\omega_x \uparrow 136\%$: Skill-biased Technological Change (SBTC)
- $\omega_l \uparrow 76\%$: Quantity-biased Technological Change (QBTC)
- ω_y unchanged
- $(1 - \sigma) \uparrow 14 \times$: Increase in complementarity between x, y
Results
Complementarities

\begin{align*}
F_{xy} \\
F_{lr}
\end{align*}
Results
Complementarities

\[F_{yl} \]

\[F_{xr} \]
RESULTS
Firm Size, Allocation, Skill Premium

Size Distribution
Allocation
Skill Premium $w'(x)$
Results

Firm Size, Allocation, Skill Premium

1. There is both SBTC and QBTC
2. FOSD in firm size distribution and shift in allocation
3. Skill premium \uparrow, but polarization (Goos-Manning, Autor-Dorn)
4. SBTC and QBTC interact
 - SBTC increases skill premium
 - QBTC decreases skill premium (concave production)

\rightarrow Skill premium increase dampened by QBTC
Counterfactuals

1996 economy with one 2010 parameter

<table>
<thead>
<tr>
<th></th>
<th>Median Firm Size</th>
<th>% change 1996</th>
<th>Average $w'(x)$</th>
<th>% change 1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>11.98</td>
<td></td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>12.53</td>
<td>4.60 %</td>
<td>0.027</td>
<td>44.06%</td>
</tr>
<tr>
<td>2010 ω_x</td>
<td>14.21</td>
<td>18.66%</td>
<td>0.049</td>
<td>156.90%</td>
</tr>
<tr>
<td>2010 ω_y</td>
<td>11.95</td>
<td>-0.21%</td>
<td>0.019</td>
<td>1.90%</td>
</tr>
<tr>
<td>2010 ω_l</td>
<td>14.81</td>
<td>23.65%</td>
<td>0.009</td>
<td>-52.04%</td>
</tr>
<tr>
<td>2010 σ</td>
<td>12.01</td>
<td>0.24%</td>
<td>0.022</td>
<td>13.68%</td>
</tr>
<tr>
<td>2010 Distributions</td>
<td>12.36</td>
<td>3.20%</td>
<td>0.022</td>
<td>13.68%</td>
</tr>
</tbody>
</table>
Conclusion

- Assortative matching with large firms: intensive and extensive margin
- A simple condition for sorting; nests many known models
- Equilibrium allocation: system of 3 differential equations
- Application: Technological Change
 1. both SBTC and QBTC
 2. effect of QBTC on skill premium: negative
 3. effect of SBTC on skill premium would have been 4 times larger