PRICES AS OPTIMAL COMPETITIVE SALES MECHANISMS

Jan Eeckhout¹ Philipp Kircher²

¹ University Pompeu Fabra – ² Oxford University – ^{1,2} University of Pennsylvania

Cowles Foundation and JET Symposium on Search Theory September 2009

Matching

Bilateral Matching

Meeting + Selection = Matching

Meeting Technology Trading
Protocol
(Mechanism)

Bilateral Matching

Search Choices

How are goods/labor sold *depending on the frictions*? (fixed prices/auctions/bargaining) How is competing mechanism design *affected by the meeting process*?

MEETING FUNCTION EXAMPLE

Example Meeting Technology:

- urnball application process
- N applications can be opened

MEETING FUNCTION EXAMPLE

Example Meeting Technology:

- urnball application process
- N applications can be opened

MEETING FUNCTION EXAMPLE

Example Meeting Technology:

- urnball application process
- N applications can be opened

MEETING FUNCTION EXAMPLE

Example Meeting Technology:

- urnball application process
- N applications can be opened

Why does it matter: (1) Types of feasible mechanisms. (2) Interaction among types!

Broad Motivation

MEETING FUNCTION EXAMPLE

Example Meeting Technology:

- urnball application process
- N applications can be opened

Why does it matter: (1) Types of feasible mechanisms. (2) Interaction among types!

MEETING FUNCTION EXAMPLE

Example Meeting Technology:

- urnball application process
- N applications can be opened

Why does it matter: (1) Types of feasible mechanisms. (2) Interaction among types!

good type

Broad Motivation

MEETING FUNCTION EXAMPLE

Example Meeting Technology:

- urnball application process
- N applications can be opened

N = 2 (negative externality in meeting –*crowding out*)

N = 1 (negative externality in meeting –*crowding out*)

"Directed Search":

Peters (1984, 1991, 1997a,b, ...); McAffee (1993), Burdett, Shi, Wright (2001); Shi (2002); Shimer (2005),...

((Moscarini 2001,...))

"Competitive Search":

Shi (2001; Guerrieri (2008), Menzio (2009);

Guerrieri, Shimer, Wright (2009) (Moen '97; Mortensen, Wright '01...)

((Albrecht, Vroman 2002,...))

Broad Motivation

MEETING FUNCTION EXAMPLE

Example Meeting Technology:

- urnball application process
- N applications can be opened

```
N = ∞ (no externality in meeting – no crowding out)
```

```
N = 2 (negative externality in meeting –crowding out)
```

N = 1 (negative externality in meeting –*crowding out*)

How does this affect the type of trading protocol (mechanism)?

"Directed Search":

Peters (1984, 1991, 1997a,b, ...); McAffee (1993), Burdett, Shi, Wright (2001); Shi (2002); Shimer (2005),...

((Moscarini 2001,...))

"Competitive Search":

Shi (2001; Guerrieri (2008), Menzio (2009);

Guerrieri, Shimer, Wright (2009) (Moen '97; Mortensen, Wright '01...)

((Albrecht, Vroman 2002,...))

THIS PAPER'S APPROACH

The approach in this paper:

- Lay out multilateral meeting function
- Specify mechanism space
- Analyze which mechanisms sellers use to attract buyers
 - homogeneous buyers
 - heterogeneous buyers with private values

THIS PAPER'S APPROACH

The approach in this paper:

- Lay out multilateral meeting function
- Specify mechanism space
- Analyze which mechanisms sellers use to attract buyers
 - homogeneous buyers
 - heterogeneous buyers with private values

Focus on price posting (relative to auctions, bargaining...):

- When is price posting an equilibrium? When is it efficient?
- What is the relationship to random search?
- What is the relationship to the meeting technology?
 [Difference: "competitive" vs "directed" search]

COMPETITION IN MECHANISMS

The game:

- 1 each buyer draw private value (if heterogeneous).
- 2 each seller posts mechanisms *m*.
- 3 each seller decides which mechanisms m to seek.
- 4 this gives buyer-seller ratios $\lambda_i(m)$ at each mechanism.
- 5 meeting function: how many buyers of each type arrive at seller.
- 6 mechanisms are being played.

COMPETITION IN MECHANISMS

The game:

- 1 each buyer draw private value (if heterogeneous).
- 2 each seller posts mechanisms m.
- 3 each seller decides which mechanisms *m* to seek.
- 4 this gives buyer-seller ratios $\lambda_i(m)$ at each mechanism.
- 5 meeting function: how many buyers of each type arrive at seller.
- 6 mechanisms are being played.

Open questions even for standard urnball ($N = \infty$):

- McAffee '93: auctions are always best reply, and strictly help under uncertainty about buyer types.
- Under price posting each seller only faces one buyer types (no uncertainty), and prices satisfy some planners problem.
- Are auctions only a weak best reply; are prices equally good?

RESULTS

Homogeneous Sellers:

- equivalence of many selling mechanisms (generalizes Camera and Selcuk 2009, justifies Kultti 1999)
- random search is socially efficient and equilibrium outcome

Heterogeneous Sellers: Price Posting

- is constrained constrained efficient if planner can only use mechanisms that give the good away at random
- is is constrained efficient and equilibrium outcome under bilateral matching (and under multilateral matching with strong crowding out, auctions still also weak best reply)
- is is not socially efficient and no equilibrium outcome under (but auctions are)

RESULTS

Homogeneous Sellers:

- equivalence of many selling mechanisms (generalizes Camera and Selcuk 2009, justifies Kultti 1999)
- random search is socially efficient and equilibrium outcome

Heterogeneous Sellers: Price Posting

- is constrained constrained efficient if planner can only use mechanisms that give the good away at random
- is is constrained efficient and equilibrium outcome under bilateral matching (and under multilateral matching with strong crowding out, auctions still also weak best reply)
- is is not socially efficient and no equilibrium outcome under (but auctions are)

More search then mechanism design. Trade-offs:

- random search leads to most matches
- but crowding might make separation of types preferable

Competitive Search / Directed Search

(Peters ('84,'91,'00,'05); Montgomery ('91); Moen ('97); Acemoglu & Shimer ('99a); Burdett, Shi & Wright ('01); Julien, Kennes & King ('00); Albrecht, Gautier & Vroman ('06); Galenianos & Kircher ('06); Shi ('07)...)

- competitive price setting with frictions
- alternative to random search
- good efficiency properties
 (Moen ('97); Acemoglu & Shimer ('99b); Shi ('01,'02); Mortensen &
 Wright ('03); Shimer ('05); Kircher ('06), Moen & Rozen ('06)...)

Question: When can we restrict attention to price posting?

- When is price posting an equilibrium? When is it efficient?
- What is the relationship to random search?
- What is the relationship to the meeting technology?
 [Difference: "competitive" vs "directed" search]

Large measure of (homogeneous) risk-neutral sellers Large measure of (possibly heterogeneous) risk-neutral buyers The market interaction:

Large measure of (homogeneous) risk-neutral sellers Large measure of (possibly heterogeneous) risk-neutral buyers

The market interaction:

Sellers post prices

Large measure of (homogeneous) risk-neutral sellers Large measure of (possibly heterogeneous) risk-neutral buyers

The market interaction:

Sellers post prices

Buyers visit sellers (after observing the prices)

Large measure of (homogeneous) risk-neutral sellers Large measure of (possibly heterogeneous) risk-neutral buyers

The market interaction:

Sellers post prices

- Buyers visit sellers (after observing the prices)
- Seller who trades gets price p
- Buyer who trades gets v − p

Large measure of (homogeneous) risk-neutral sellers Large measure of (possibly heterogeneous) risk-neutral buyers

The market interaction:

Sellers post prices

- Buyers visit sellers (after observing the prices)
- Seller who trades gets price p
- Buyer who trades gets v p
- Meeting prob. depends on expected number of buyers λ $P_n(\lambda)$: Prob. that seller has n buyers $Q_n(\lambda)$: Prob. that buyer faces n-1 other buyers.

Large measure of (homogeneous) risk-neutral sellers Large measure of (possibly heterogeneous) risk-neutral buyers

The market interaction:

- Sellers post prices
 - Seller's max. problem when buyers can get utility U elsewhere

$$\max_{\substack{\rho,\lambda}} \qquad [1-P_0(\lambda)]\rho$$
 s.t.
$$\sum_{n\geq 1} Q_n(\lambda) \frac{[v-p]}{n} = U \text{ if } \lambda>0$$

- Buyers visit sellers (after observing the prices)
- Seller who trades gets price p
- Buyer who trades gets v − p
- Meeting prob. depends on expected number of buyers λ $P_n(\lambda)$: Prob. that seller has n buyers $Q_n(\lambda)$: Prob. that buyer faces n-1 other buyers.

homogeneous buyers:

homogeneous buyers:

a) efficient
Price Posting
b) random in equilibrium

Random Search under urnball meetings and
Second price auctions w/o reserve

homogeneous buyers:

a) efficient
b) random in equilibrium

Posting Mechanisms (arbitrary meetings & mechanisms)

Random Search under urnball meetings and
Second price auctions w/o reserve

homogeneous buyers:

a) efficient
b) random in equilibrium

Posting Mechanisms (arbitrary meetings & mechanisms)

Random Search under urnball meetings and
Second price auctions w/o reserve

general questions:

- 1. Is price posting as efficient as other mechanisms?
- 2. Is price posting an equilibrium?
- 3. Is efficiency achievable by random search?

Importance: Can we restrict attention to "simple" mechanisms?

What is the role of the meeting technology?

random search is efficient

Not b) random search not efficient

REMARK: URNBALL MATCHING

What we know from competing mechanism design under "urn-ball" matching: (McAffee ('93), Peters ('97, '99), Peters & Severinov ('97))

- second price auctions are always a best reply
- auctions useful under uncertainty about buyer type

REMARK: URNBALL MATCHING

What we know from competing mechanism design under "urn-ball" matching: (McAffee ('93), Peters ('97, '99), Peters & Severinov ('97))

- second price auctions are always a best reply
- auctions useful under uncertainty about buyer type

On the other hand:

- under price posting each seller only faces one buyer type (no uncertainty in equilibrium)
- · price posting is "constraint" efficient

REMARK: URNBALL MATCHING

What we know from competing mechanism design under "urn-ball" matching: (McAffee ('93), Peters ('97, '99), Peters & Severinov ('97))

- second price auctions are always a best reply
- auctions useful under uncertainty about buyer type

On the other hand:

- under price posting each seller only faces one buyer type (no uncertainty in equilibrium)
- · price posting is "constraint" efficient

Deeper Question:

- Are auctions only a weak best reply?
- Are prices also a best reply, as they "screen" ex ante?

OUTLINE

- The price model
- The meeting function
- The general mechanism model
- 1 Price posting
 - homogeneous buyers
 - 2 heterogeneous buyers
- 2 General Mechanisms
 - 1 "Directed Search" (multilateral matching, no crowding out)
 - 2 "Competitive Search" (bilateral matching, crowding out) Comment: multilateral matching with crowding out

- Sellers post prices according to measure μ_s
 - Seller's maximization problem

$$\max_{\substack{\rho,\underline{\lambda},\\\\\text{s.t.}}} \quad [1-P_0(\underline{\lambda} \quad)]p$$
 s.t.
$$\sum_{n\geq 1}Q_n(\underline{\lambda} \quad)\frac{[\underline{\nu}-p]}{n}=\underline{U}^* \quad \text{if } \underline{\lambda}>0$$

- Buyers visit sellers according to measure μ_h
- Seller who trades gets price p
- Buyer who trades gets v p
- Meeting prob. depends on expected number of buyers λ $P_n(\lambda)$: Prob. that seller has n buyers $Q_n(\lambda)$: Prob. that buyer faces n-1 other buyers.

- Sellers post prices according to measure μ_s
 - Seller's maximization problem

$$\max_{\substack{p,\underline{\lambda},\overline{\lambda}\\ p,\underline{\lambda},\overline{\lambda}}} \quad [1-P_0(\underline{\lambda}+\overline{\lambda})]p$$
s.t.
$$\sum_{n\geq 1} Q_n(\underline{\lambda}+\overline{\lambda}) \frac{[\underline{\nu}-p]}{n} = \underline{U}^* \quad \text{if } \underline{\lambda}>0$$

- Buyers visit sellers according to measure μ_h
- Seller who trades gets price p
- Buyer who trades gets v p
- Meeting prob. depends on expected number of buyers λ $P_n(\lambda)$: Prob. that seller has n buyers $Q_n(\lambda)$: Prob. that buyer faces n-1 other buyers.

- Sellers post prices according to measure μ_s
 - Seller's maximization problem

$$\begin{split} \max_{\substack{p,\underline{\lambda},\overline{\lambda}}} & & [1-P_0(\underline{\lambda}+\overline{\lambda})]p \\ \text{s.t.} & & \sum_{n\geq 1} Q_n(\underline{\lambda}+\overline{\lambda})\frac{[\underline{\nu}-\underline{\rho}]}{n} = \underline{U}^* & \text{if } \underline{\lambda}>0 \\ \text{s.t.} & & \sum_{n\geq 1} Q_n(\underline{\lambda}+\overline{\lambda})\frac{[\overline{\nu}-\underline{\rho}]}{n} = \overline{U}^* & \text{if } \overline{\lambda}>0 \end{split}$$

- Buyers visit sellers according to measure μ_h
- Seller who trades gets price p
- Buyer who trades gets $\underline{v} p$
- Meeting prob. depends on expected number of buyers λ $P_n(\lambda)$: Prob. that seller has n buyers $Q_n(\lambda)$: Prob. that buyer faces n-1 other buyers.

- Sellers post prices according to measure μ_s
 - Seller's maximization problem

$$\begin{split} \max_{\substack{p,\underline{\lambda},\overline{\lambda}\\\\ \text{s.t.}}} & & [1-P_0(\underline{\lambda}+\overline{\lambda})]p\\ \text{s.t.} & & & \sum_{n\geq 1}Q_n(\underline{\lambda}+\overline{\lambda})\frac{[\underline{\nu}-\underline{\rho}]}{n} = \underline{U}^* & \text{if } \underline{\lambda}>0\\ \text{s.t.} & & & & \sum_{n\geq 1}Q_n(\underline{\lambda}+\overline{\lambda})\frac{[\overline{\nu}-\underline{\rho}]}{n} = \overline{U}^* & \text{if } \overline{\lambda}>0 \end{split}$$

- Buyers visit sellers according to measure μ_b (and $\overline{\mu}_b$)
- Seller who trades gets price p
- Buyer who trades gets v p (and $\overline{v} p$)
- Meeting prob. depends on expected number of buyers $\lambda = \underline{\lambda} + \overline{\lambda}$ $P_n(\lambda)$: Prob. that seller has n buyers $Q_n(\lambda)$: Prob. that buyer faces n-1 other buyers.

EQUILIBRIUM

DEFINITION (EQUILIBRIUM)

An equilibrium consists of distributions of trading strategies, buyer-seller ratios and buyer utilities such that

- 1 Seller Optimality: sellers solve their maximization problem.
- 2 Buyer Optimality: buyer choose sellers optimally.
- 3 Market Clearing: buyer-seller ratio arises from trading.

For any measurable subset $\ensuremath{\mathcal{P}}$ of prices:

```
s \int_{\mathcal{P}} \underline{\lambda}(\mathbf{p}) d\mu_{\mathcal{S}} = \underline{b} \int_{\mathcal{P}} d\underline{\mu}_{\mathbf{b}} \text{ and } s \int_{\mathcal{P}} \overline{\lambda}(\mathbf{p}) d\mu_{\mathcal{S}} = \overline{b} \int_{\mathcal{P}} d\overline{\mu}_{\mathbf{b}}.
```

EQUILIBRIUM

DEFINITION (EQUILIBRIUM)

An equilibrium consists of distributions of trading strategies, buyer-seller ratios and buyer utilities such that

- 1 Seller Optimality: sellers solve their maximization problem.
- 2 Buyer Optimality: buyer choose sellers optimally.
- 3 Market Clearing: buyer-seller ratio arises from trading.

For any measurable subset \mathcal{P} of prices:

```
s \int_{\mathcal{P}} \underline{\lambda}(p) d\mu_{\mathcal{S}} = \underline{b} \int_{\mathcal{P}} d\underline{\mu}_{h} \text{ and } s \int_{\mathcal{P}} \overline{\lambda}(p) d\mu_{\mathcal{S}} = \overline{b} \int_{\mathcal{P}} d\overline{\mu}_{b}.
```

For definition with arbitrary anonymous mechanisms:

- A mechanism describes expected payoff for low buyer
- Similar for high buyer type and for seller.
- Has to obey resource constraint and incentive compatibility

- λ: expected number of buyers
- $P_n(\lambda)$: Prob. that seller has n buyers
- $Q_n(\lambda)$: Prob. that buyer faces n-1 other buyers
- $nP_n(\lambda) = \lambda Q_n(\lambda), n \geq 1$

- λ: expected number of buyers
- $P_n(\lambda)$: Prob. that seller has n buyers
- $Q_n(\lambda)$: Prob. that buyer faces n-1 other buyers
- $nP_n(\lambda) = \lambda Q_n(\lambda), n \geq 1$
- Monotonicity (in the sense of FOSD):

$$P_0'(\lambda) < 0$$
 and $\sum_{n=0}^{N} P_n'(\lambda) \le 0$ for all N .

- λ: expected number of buyers
- $P_n(\lambda)$: Prob. that seller has n buyers
- $Q_n(\lambda)$: Prob. that buyer faces n-1 other buyers
- $nP_n(\lambda) = \lambda Q_n(\lambda), n \geq 1$
- Monotonicity (in the sense of FOSD):

$$P_0'(\lambda) < 0$$
 and $\sum_{n=0}^N P_n'(\lambda) \le 0$ for all N .

• Concavity: $1 - P_0(\lambda)$ is strictly concave. (FOSD \Rightarrow concavity on some of the domain; here: everywhere.)

- λ: expected number of buyers
- $P_n(\lambda)$: Prob. that seller has n buyers
- $Q_n(\lambda)$: Prob. that buyer faces n-1 other buyers
- $nP_n(\lambda) = \lambda Q_n(\lambda), n \geq 1$
- Monotonicity (in the sense of FOSD):

$$P_0'(\lambda) < 0$$
 and $\sum_{n=0}^N P_n'(\lambda) \le 0$ for all N .

- Concavity: $1 P_0(\lambda)$ is strictly concave. (FOSD \Rightarrow concavity on some of the domain; here: everywhere.)
- Examples:
 - 1 urnball matching: $P_n(\lambda) = \lambda^n e^{-\lambda}/n!$
 - 2 Kiyotaki-Wright matching: $P_1(\lambda) = \alpha \lambda/(1 + \lambda) = 1 P_0(\lambda)$

- λ: expected number of buyers
- $P_n(\lambda)$: Prob. that seller has *n* buyers
- $Q_n(\lambda)$: Prob. that buyer faces n-1 other buyers
- $nP_n(\lambda) = \lambda Q_n(\lambda), n \geq 1$
- Monotonicity (in the sense of FOSD):

$$P_0'(\lambda) < 0$$
 and $\sum_{n=0}^N P_n'(\lambda) \le 0$ for all N .

- Concavity: $1 P_0(\lambda)$ is strictly concave. (FOSD \Rightarrow concavity on some of the domain; here: everywhere.)
- Examples:
 - 1 urnball matching: $P_n(\lambda) = \lambda^n e^{-\lambda}/n!$
 - 2 Kiyotaki-Wright matching: $P_1(\lambda) = \alpha \lambda / (1 + \lambda) = 1 P_0(\lambda)$
- All types have equal meeting chances in a market.

PRICE POSTING AND MECHANISMS

1.1) Homogeneous Buyers

PROPOSITION (PRICE POSTING W/ HOMOG. BUYERS)

Under price posting, in equilibrium one price is offered, buyers select at random, and randomness is efficient

Def.: A class of mechanisms is *payoff complete* if it has some dimension (like the reserve price in an auction) to shift payoffs between buyers and sellers.

PROPOSITION (EQUIVALENCE)

In any class of pay-off complete (full-trade) mechanisms

- an equilibrium mechanism exists
- remains equilibrium mech. when other mech. are added
- equilibrium payoffs are identical as under price posting
- search is (essentially) random.

1.2) Heterogeneous Buyers

PROPOSITION (PRICE POSTING W/ HETEROG. BUYERS)

Price Posting leads in equilibrium to

- two prices, one for each type
- buyers separate by "voting with their feet"
- constrained efficient given frictions and within the class of non-discriminatory mechanisms (Hosios' Condition).

Sketch of separation argument:

- low types want low price more than good matching probability
- single crossing property
- pricing effectively separates the types.

2.1) "DIRECTED" (MULTILATERAL MATCHING - NO CROWDING OUT)

DEFINITION (No crowding out)

The meeting technology exhibits "no crowding out" if the meeting probability for one buyer type is independent of choices by the other.

PROPOSITION (MECHANISM POSTING)

- Identical auctions are more efficient than price posting
- Price posting is not an equ. when auction are available.

Sketch of Proof:

- Random search yields most matches $[1 P_0]$ concave
- More matches with identical auctions than w/ price posting
- · High types choose randomly and get the object fist
- ⇒ most matches for high types.
- Most matches & most matches for high types ⇒ efficiency.
- Individual deviation to auction mechanisms is profitable.

2.2.) "Competitive" (Bilateral Matching - Crowding Out)

Bilateral matching has "crowding out": $Q_0(\underline{\lambda} + \overline{\lambda})$ increases in $\underline{\lambda}$.

$$[1 - Q_0(\lambda) = Q_1(\lambda) = P_1(\lambda)/\lambda = (1 - P_0(\lambda))/\lambda, P_1' < 0.]$$

PROPOSITION (MECHANISM POSTING)

Under bilateral matching

- Price posting is constrained efficient.
- Price posting is an equilibrium.
- Random search is never constrained efficient.

Sketch of Proof:

- The presence of low types "crowds out" high types.
- Sellers never see high types when a low type is present.
- All "selection" before the seller can intervene.
- Best not to mix types.
- Under separation: prices do a good job.

2.2) COMMENT: MULTILATERAL MATCHING - CROWDING OUT

Multilateral Matching w/o Crowding Out and Bilateral Matching are extremes.

2.2) COMMENT: MULTILATERAL MATCHING - CROWDING OUT

Multilateral Matching w/o Crowding Out and Bilateral Matching are extremes. Example: Consider an urnball arrival but

- a seller can only show up to N buyers the good (his house/car...)
- a firm can only screen up to N applicants

N= 1: Bilateral Meetings

 $N=\infty$: Multilateral Meetings without Crowding Out

 $N \in (1, \infty)$: Multilateral Meetings with Crowding Out

2.2) COMMENT: MULTILATERAL MATCHING - CROWDING OUT

Multilateral Matching w/o Crowding Out and Bilateral Matching are extremes. Example: Consider an urnball arrival but

- a seller can only show up to N buyers the good (his house/car...)
- a firm can only screen up to N applicants

N= 1: Bilateral Meetings

 $N=\infty$: Multilateral Meetings without Crowding Out $N \in (1,\infty)$: Multilateral Meetings with Crowding Out

Surplus under separate markets: $S^{sep}(\underline{b}, \overline{b})$ Surplus under separate markets: $S^{joint}(b, \overline{b})$.

Conjecture:

- $S^{sep}(\underline{b}, \overline{b}) > S^{joint}(\underline{b}, \overline{b}) \forall (\underline{b}, \overline{b})$: Price Posting optimal and equilibrium
- $S^{sep}(\underline{b}, \overline{b}) < S^{joint}(\underline{b}, \overline{b}) \forall (\underline{b}, \overline{b})$: Auctions optimal and equilibrium
- Otherwise: Possibly "partial pooling"

CONCLUSION

- "Competitive" (Homog. agents or bilatateral matching):
 - Prices are constrained efficient (other mechanisms only replicate the pricing outcome)
 - Random search is not efficient under buyer heterogeneity.
- "Directed" (multilateral matching w/o crowding out):
 - Prices are not constrained efficient (when discriminatory mechanisms are available).
 - Random search is efficient
 (when discriminatory mechanisms are available Caveat: only when sellers are homogeneous).
- Larger relevance:
 - Clarifies when prices do a "good job".
 - Shows relevance of the specific meeting technology.
 - Highlights when we can focus on one buyer type (even under additional problems such as moral hazard ect.)

1.2) SINGLE CROSSING - SEPARATION "BY FEET"

Buyer's indifference curves

1.2) Single Crossing - Separation "by Feet" Iso-profit curve at a single market price

1.2) SINGLE CROSSING - SEPARATION "BY FEET" Equilibrium with two prices

