SORTING AND DECENTRALIZED PRICE COMPETITION

Jan Eeckhout^{1,2} Philipp Kircher¹

¹University of Pennsylvania – ²UPF

MIT, 17 February 2009

- Role of prices in the classic assignment problem? Complementarities are common in:
 - labor market
 - business partnerships
 - product markets (car quality, driver's milage) ; (size of house, size of family)
- Becker (1973): competitive matching market
 - · full information about prices and types, perfect trade
 - Concern: important trade imperfections (unemployment, waiting times)
- Shimer and Smith (2000): random search
 - no information about prices and types, imperfect trade
 - Concern: No information is a strong assumption
- Our approach: decentralized price competition
 - full information about prices and types, imperfect trade (e.g. due to mis-coodination) (competitive search / directed search)

- We uncover a natural economic explanation for the forces that govern the matching patterns (when good types match with other good types?)
- Insights:
 - New condition for positive sorting (between Becker and Shimer-Smith)
 - New condition for negative sorting
 - Clear economic interpretation of the driving forces

- Two key aspects to matching:
 - (1) The quality of the match ("match value motive"):

(2) The probability (speed) of trade ("trading-security"):

- Two key aspects to matching:
 - (1) The quality of the match ("match value motive"):

(2) The probability (speed) of trade ("trading-security"):

> 0

- Two key aspects to matching:
 - (1) The quality of the match ("match value motive"):

(2) The probability (speed) of trade ("trading-security"):

complementarities frictions > 0 (2) bad types facilitate trade (insurance) (1) Becker (1973)

- Two key aspects to matching:
 - (1) The quality of the match ("match value motive"):

(2) The probability (speed) of trade ("trading-security"):

$$\underbrace{\text{complementarities ES}}_{\text{(1) Becker (1973)}} - \underbrace{\text{frictions ES}}_{\text{(2) bad types facilitate trade (insurance)}} > 0$$

- Two key aspects to matching:
 - (1) The quality of the match ("match value motive"):+AM only for *strong* complementarity
 - (2) The probability (speed) of trade ("trading-security"):

$$\underbrace{\text{complementarities ES}}_{\text{(1) Becker (1973)}} - \underbrace{\text{frictions ES}}_{\text{(2) bad types facilitate trade (insurance)}} > 0$$

- Two key aspects to matching:
 - (1) The quality of the match ("match value motive"):

+AM only for strong complementarity: root-supermodularity (generalized: 1/(1 - a) - root-supermodularity, where a is el. of subst. in matching)

(2) The probability (speed) of trade ("trading-security"):

$$\underbrace{\text{complementarities ES}}_{\text{(1) Becker (1973)}} - \underbrace{\text{frictions ES}}_{\text{(2) bad types facilitate trade (insurance)}} > 0$$

- Two key aspects to matching:
 - (1) The quality of the match ("match value motive"):

+AM only for strong complementarity: root-supermodularity (generalized: 1/(1 - a) - root-supermodularity, where a is el. of subst. in matching)

The probability (speed) of trade ("trading-security"): (2)–AM even with some supermodularity: nowhere root-sm

complementarities ES⁻¹ – (2) bad types facilitate trade (insurance) (1) Becker (1973)

RELATED LITERATURE

DECENTRALIZED PRICE COMPETITION

Peters (1984,1991,1997a,2000), Moen (1997), Acemoglu, Shimer (1999a,b), Burdett, Shi, Wright (2001), Shi (2001), Mortensen, Wright (2002), Rocheteau, Wright (2005), Galenianos, Kircher ('06), Kircher ('07), Delacroix, Shi ('06)

GENERAL MATCHING FUNCTION

Comp. Search (Moen (1997),...), Dir. Search (Menzio 2007)

ASSORTATIVE MATCHING

Becker (1973), Burdett, Coles (1997), Shimer, Smith (2000)

COMPETING AUCTIONS - EX POST SCREENING McAfee (1993), Peters (1997b), Shi (2002), Shimer (2005), Eeckhout and Kircher (2008)

THE MODEL

Players

- Measure S(1) sellers: observable types $y \in [y, \overline{y}]$ dist S(y)
- Measure 1 buyers: private type $x \in [\underline{x}, \overline{x}]$ i.i.d. from B(x)
- Unit demands and supplies
- *Payoffs* of trade between (*x*, *y*) at price *p*:
 - Buyer: utility f(x, y) p
 - Seller: profit p
 - No trade: payoffs normalized to zero

THE MODEL The extensive form

2 stage extensive form:

- 1 Sellers post prices: G(y, p) seller distribution of (y, p)
- 2 Buyers observe *G* and choose *y*, *p*
 - H(y, p) buyer distribution over (y, p).
 - If buyer meets such a seller, he gets the good and pays p

Matching Technology:

- Let \(\lambda\) be buyer-seller ratio (depends on (y, p))
- Matching prob.: Seller $m(\lambda)$; Buyer: $q(\lambda) = m(\lambda)/\lambda$
- $m,q \in [0,1], \ m' > 0, \ q' < 0$, m'' < 0

THE MODEL MATCHING FUNCTION

Interpretation of different $\lambda(y, p)$

- 1 anonymous strategies (buyer miscoordination)
- 2 spacial separation (Acemoglu 1997)
- 3 market makers providing trading platforms (Moen 1997)

Examples of Matching Function

- 1 anonymous strategies [urn-ball]: $m_1(\lambda) = 1 e^{-\lambda}$
- 2 fraction 1β buyers get lost:
- 3 random on island [telegraph-line]: $m_3(\lambda) = \lambda/(1 + \lambda)$
- 4 CES: $m_4(\lambda) = (1 + k\lambda^{-r})^{-1/r}$

 $m_2(\lambda) = 1 - e^{-\beta\lambda}$

Number of matches: $M(b, s) = sM(\frac{b}{s}, 1) = sm(\lambda)$

PAYOFFS AND OPTIMAL DECISIONS GIVEN G and H

• Queue length $\lambda(y, p)$ on equilibrium path (given G and H):

$$\int_{\mathcal{A}} \lambda(\cdot, \cdot) d\mathbf{G} = \int_{\mathcal{A}} d\mathbf{H} \quad \forall \ \mathcal{A} \subset \mathcal{Y} \times \mathcal{P},$$

• Stage 2: Buyer x obtains utility U(x) according to

$$\max_{(y,p)\in \text{supp}G\cup z} q(\lambda(y,p))(f(x,y)-p).$$
(1)

• Stage 1: Seller y optimizes according to

$$\max_{p \in \mathcal{P}} m(\lambda(y, p))p.$$
 (2)

• Subgame Perfection "off-equilibrium-path" Acemoglu and Shimer (1999b): $\lambda(y, p)$ s.t.

$$\begin{array}{lll} U(x) &=& q(\lambda(y,p)) \left(f(x,y)-p\right) \text{ for some } x \\ U(x) &\geq& q(\lambda(y,p)) \left(f(x,y)-p\right) \text{ for all } x \end{array}$$

EQUILIBRIUM

Recall:

- (1) Buyer's Problem: $\max_{(y,p)\in supp G\cup z} q(\lambda(y,p))(f(x,y)-p)$
- (2) Seller's Problem: $\max_{p \in \mathcal{P}} m(\lambda(y, p))p$

DEFINITION

An equilibrium is a pair (G^*, H^*) that have full measure and for all measurable subsets \mathcal{A} of the quality-price space $\mathcal{Y} \times \mathcal{P} \cup z$:

Sellers: $G^*(\mathcal{A}) \leq S(y \in \mathcal{Y} \mid \exists p \text{ that solves (2) and } (y, p) \in \mathcal{A})$

Buyers: $H^{\star}(\mathcal{A}) \leq B(x \in \mathcal{X} \mid \exists (y, p) \text{ that solves (1) and } (y, p) \in \mathcal{A}).$

ASSIGNMENT FUNCTION

DEFINITION (ASSIGNMENT FUNCTION)

 $\mu(y) \in \mathcal{X}$: buyer type that wants to trade with seller y

Assortative Matching

- μ'(y) > 0: Positive Assortative Matching (+AM) (for matched types)
- μ'(y) < 0: Negative Assortative Matching (–AM) (for matched types)

ROOT-SUPERMODULARITY

DEFINITION A function f(x, y) is: Supermodular

$$rac{\partial^2 f(x,y)}{\partial x \partial y} > 0 \qquad \Leftrightarrow f_{xy}(x,y) > 0$$

ROOT-SUPERMODULARITY

DEFINITION A function f(x, y) is: Supermodular Log-supermodular

$$\frac{\frac{\partial^2 f(x,y)}{\partial x \partial y} > 0 \qquad \Leftrightarrow f_{xy}(x,y) > 0 \\ \frac{\partial^2 \log f(x,y)}{\partial x \partial y} > 0 \quad \Leftrightarrow f_{xy}(x,y) > \frac{f_x(x,y)f_y(x,y)}{f(x,y)}$$

ROOT-SUPERMODULARITY

DEFINITION A function f(x, y) is: Supermodular Log-supermodular Root-supermodular

$$\begin{array}{ll} \frac{\partial^2 f(x,y)}{\partial x \partial y} > 0 & \Leftrightarrow f_{xy}(x,y) > 0\\ \frac{\partial^2 \log f(x,y)}{\partial x \partial y} > 0 & \Leftrightarrow f_{xy}(x,y) > \frac{f_x(x,y)f_y(x,y)}{f(x,y)}\\ \frac{\partial^2 \sqrt{f(x,y)}}{\partial x \partial y} > 0 & \Leftrightarrow f_{xy}(x,y) > \frac{1}{2} \frac{f_x(x,y)f_y(x,y)}{f(x,y)} \end{array}$$

ROOT-SUPERMODULARITY

DEFINITION A function f(x, y) is: Supermodular Log-supermodular Root-supermodular *n*-root-supermodular

$$\frac{\frac{\partial^2 f(x,y)}{\partial x \partial y} > 0}{\frac{\partial^2 \log f(x,y)}{\partial x \partial y} > 0} \quad \Leftrightarrow f_{xy}(x,y) > 0 \\ \frac{\frac{\partial^2 \log f(x,y)}{\partial x \partial y} > 0}{\frac{\partial^2 \sqrt{f(x,y)}}{\partial x \partial y} > 0} \quad \Leftrightarrow f_{xy}(x,y) > \frac{f_x(x,y)f_y(x,y)}{f(x,y)} \\ \frac{\frac{\partial^2 \sqrt{f(x,y)}}{\partial x \partial y} > 0}{\frac{\partial^2 \sqrt{f(x,y)}}{\partial x \partial y} > 0} \quad \Leftrightarrow f_{xy}(x,y) > \frac{1}{2} \frac{f_x(x,y)f_y(x,y)}{f(x,y)} \\ \frac{\frac{\partial^2 \sqrt{f(x,y)}}{\partial x \partial y} > 0}{\frac{\partial^2 \sqrt{f(x,y)}}{\partial x \partial y} > 0} \quad \Leftrightarrow f_{xy}(x,y) > \frac{n-1}{n} \frac{f_x(x,y)f_y(x,y)}{f(x,y)}$$

ROOT-SUPERMODULARITY

DEFINITION A function f(x, y) is: Supermodular Log-supermodular Root-supermodular *n*-root-supermodular

$$\begin{array}{ll} \frac{\partial^2 f(x,y)}{\partial x \partial y} > 0 & \Leftrightarrow f_{xy}(x,y) > 0 \\ \frac{\partial^2 \log f(x,y)}{\partial x \partial y} > 0 & \Leftrightarrow f_{xy}(x,y) > \frac{f_x(x,y)f_y(x,y)}{f(x,y)} \\ \frac{\partial^2 \sqrt{f(x,y)}}{\partial x \partial y} > 0 & \Leftrightarrow f_{xy}(x,y) > \frac{1}{2} \frac{f_x(x,y)f_y(x,y)}{f(x,y)} \\ \frac{\partial^2 \sqrt{f(x,y)}}{\partial x \partial y} > 0 & \Leftrightarrow f_{xy}(x,y) > \frac{n-1}{n} \frac{f_x(x,y)f_y(x,y)}{f(x,y)} \end{array}$$

Extreme cases of *n*-root-supermodular: n = 1: Supermodular; $n \to \infty$ log-supermodular

LOG - ROOT - SUPERMODULARITY

Supermodular: $f_{xy} > 0$

Example $f = (x + y)^{\alpha}, \alpha > 1$

LOG - ROOT - SUPERMODULARITY

Example $f = (x + y)^{\alpha}, \alpha > 1$ $f = (x + y)^{\alpha}, \alpha > 2$

LOG - ROOT - SUPERMODULARITY

ASSORTATIVE MATCHING MAIN INSIGHTS

- *n*-root-supermod needed to overcome NAM (*n* ∈ [0, 1])
- n equals elasticity of substitution in matching
- n results simple (efficiency) trade-off
 - complementarities in production
 - complementarities in search technology

Illustration of -AM $% \mathcal{A}$

- 1. The quality of the match.
- 2. The probability (speed) of trade.

- 1 . Shut down : The quality of the match.
- 2. The probability (speed) of trade.

- 1 . Shut down : The quality of the match.
- 2 . The probability (speed) of trade.
- Total valuation: f(x, y) = x + y
 (e.g. opportunity cost to seller: y = -c)
- Frictionless: optimal assignment is indeterminate (no "match value motive")

- 1 . Shut down : The quality of the match.
- 2. The probability (speed) of trade.
- Total valuation: f(x, y) = x + y
 (e.g. opportunity cost to seller: y = -c)
- Frictionless: optimal assignment is indeterminate (no "match value motive")
- Frictions: Equilibrium is -AM

- 1 . Shut down : The quality of the match.
- 2 . The probability (speed) of trade.
- Total valuation: f(x, y) = x + y
 (e.g. opportunity cost to seller: y = -c)
- Frictionless: optimal assignment is indeterminate (no "match value motive")
- Frictions: Equilibrium is -AM
- High value buyer pays high *p* to avoid no-sale ("trading-security motive")
- Low type seller is more interested in price than prob. (so low seller types provide trading security for buyers)

ILLUSTRATION OF -AM

- With private values: single crossing
- Buyers' indifference curves in 2-dimensional plane

ILLUSTRATION OF -AM

- With private values: single crossing
- Sellers' isoprofit curves in 2-dimensional plane

ILLUSTRATION OF -AM

- With private values: single crossing
- –AM: High y₂ matches with low x₁

MAIN THEOREMS

There exist \bar{n} and \underline{n} in [0, 1] such that

THEOREM (+AM UNDER \overline{n} -ROOT-SUPERMODULARITY) +AM for all type distr. iff f(x, y) is \overline{n} - root-supermodular. -AM for all type distr. iff f(x, y) is nowhere \underline{n} -root-supermod.
MAIN THEOREMS

There exist \bar{n} and \underline{n} in [0, 1] such that

THEOREM (+AM UNDER \overline{n} -ROOT-SUPERMODULARITY) +AM for all type distr. iff f(x, y) is \overline{n} - root-supermodular. -AM for all type distr. iff f(x, y) is nowhere \underline{n} -root-supermod.

THEOREM (EFFICIENCY)

The assortative assignment is constrained efficient.

MAIN THEOREMS

There exist \bar{n} and \underline{n} in [0, 1] such that

THEOREM (+AM UNDER \overline{n} -ROOT-SUPERMODULARITY) +AM for all type distr. iff f(x, y) is \overline{n} - root-supermodular. -AM for all type distr. iff f(x, y) is nowhere \underline{n} -root-supermod.

THEOREM (EFFICIENCY)

The assortative assignment is constrained efficient.

Proposition: q^{-1} convex and derivatives bounded: +AM for all distr. iff f(x, y) is square-root-supermodular. **Corollary:** -AM for all distr. if f(x, y) is weakly submod.

Proposition: If matching function is not CES +*AM* for some distr. even if f(x, y) not \bar{n} -root-supermod. **Proposition:** If matching function is not CES -*AM* for some distr. even if f(x, y) is <u>n</u>-root-supermod.

POSITIVE ASSORTATIVE MATCHING PROOF: +AM IFF $f(x, y) \bar{n}$ -ROOT-SUPERMODULAR

Seller y:

$$max_{p\in \mathcal{P}}m(\lambda(p, y))p$$

where $\lambda(y, p)$, satisfies buyer optimization

1

$$\begin{array}{lll} U(x) &=& q(\lambda(p,y))[f(x,y)-p(y)], \text{ for } x=\mu^{\star}(y) \\ U(x') &\geq& q(\lambda(p,y))[f(x',y)-p(y)], \text{ for all } x' \end{array}$$

Seller *y*'s problem is equivalent to (for any *p* attract *x* that gives highest possible λ ; cf. Competing Mechanisms):

s.t.
$$\begin{aligned} \max_{x,\rho,\lambda} \pi &= m(\lambda)p\\ \frac{m(\lambda)}{\lambda} [f(x,y) - p] &= U(x). \end{aligned}$$

PROOF: +AM IFF f(x, y) \bar{n} -ROOT-SUPERMODULAR After substituting the constraint:

$$\max_{x\in\mathcal{X},\lambda\geq 0}m(\lambda)f(x,y)-\lambda U(x).$$

First Order Conditions:

$$m'(\lambda)f(x,y) - U(x) = 0$$

$$m(\lambda)f_x(x,y) - \lambda U'(x) = 0$$

Hessian for SOC:

$$\begin{pmatrix} m''(\lambda)f(x,\mu) & m'(\lambda)f_X(x,\mu) - U'(x) \\ m'(\lambda)f_X(x,\mu) - U'(x) & m(\lambda)f_{XX}(x,\mu) - \lambda U''(x) \end{pmatrix}$$

Along Equilibrium Allocation:

$$\mu'\left[f_{xy}-\underbrace{\frac{m'(\lambda)q'(\lambda)}{q(\lambda)m''(\lambda)}}_{a(\lambda)}\frac{f_x(x,\mu)f_y(x,\mu)}{f(x,\mu)}\right]>0,$$

PROOF: +AM IFF f(x, y) \bar{n} -ROOT-SUPERMODULAR After substituting the constraint:

$$\max_{x\in\mathcal{X},\lambda\geq 0}m(\lambda)f(x,y)-\lambda U(x).$$

First Order Conditions:

$$m'(\lambda)f(x,y) - U(x) = 0$$

$$m(\lambda)f_x(x,y) - \lambda U'(x) = 0$$

Hessian for SOC:

$$\begin{pmatrix} m''(\lambda)f(x,\mu) & m'(\lambda)f_x(x,\mu) - U'(x) \\ m'(\lambda)f_x(x,\mu) - U'(x) & m(\lambda)f_{xx}(x,\mu) - \lambda U''(x) \end{pmatrix}.$$

Along Equilibrium Allocation: Question: $a(\lambda)$? Magnitude?

$$\mu'\left[f_{xy}-\underbrace{\frac{m'(\lambda)q'(\lambda)}{q(\lambda)m''(\lambda)}}_{a(\lambda)}\frac{f_x(x,\mu)f_y(x,\mu)}{f(x,\mu)}\right]>0,$$

PROOF: +AM IFF f(x, y) \bar{n} -ROOT-SUPERMODULAR After substituting the constraint:

$$\max_{x\in\mathcal{X},\lambda\geq 0}m(\lambda)f(x,y)-\lambda U(x).$$

First Order Conditions:

 $m'(\lambda)f(x,y) - U(x) = 0 \Rightarrow \pi = m(\lambda) \left[1 - \lambda m'(\lambda)m(\lambda)^{-1}\right] f(x,y)$ $m(\lambda)f_x(x,y) - \lambda U'(x) = 0$

Hessian for SOC:

$$\begin{pmatrix} m''(\lambda)f(x,\mu) & m'(\lambda)f_X(x,\mu) - U'(x) \\ m'(\lambda)f_X(x,\mu) - U'(x) & m(\lambda)f_{XX}(x,\mu) - \lambda U''(x) \end{pmatrix}$$

Along Equilibrium Allocation: Question: $a(\lambda)$? Magnitude?

$$\mu'\left[f_{xy}-\underbrace{\frac{m'(\lambda)q'(\lambda)}{q(\lambda)m''(\lambda)}}_{a(\lambda)}\frac{f_x(x,\mu)f_y(x,\mu)}{f(x,\mu)}\right]>0,$$

INTUITION AND EXPLANATION

What is $a(\lambda)$?

• It is the *elasticity of substitution* σ_M between buyers and sellers in the matching function M(b, s) = sm(b/s).

$$a(\lambda) = \frac{M_b(\lambda, 1)M_s(\lambda, 1)}{M_{bs}(\lambda, 1)M(\lambda, 1)}$$

Why is it important?

- The Hosios' condition: entry of sellers into one (*x*, *y*) based on *derivative of matches with respect to sellers* (*M*_s).
- Our condition connects different (x, y) combinations via the elasticity of substitution between buyers and sellers (σ_M).

Interpretation in terms of "match value" and "trading security":

INTUITION AND EXPLANATION

What is $a(\lambda)$?

• It is the *elasticity of substitution* σ_M between buyers and sellers in the matching function M(b, s) = sm(b/s).

$$a(\lambda) = \frac{M_b(\lambda, 1)M_s(\lambda, 1)}{M_{bs}(\lambda, 1)M(\lambda, 1)}$$

Why is it important?

- The Hosios' condition: entry of sellers into one (*x*, *y*) based on *derivative of matches with respect to sellers (M_s)*.
- Our condition connects different (x, y) combinations via the elasticity of substitution between buyers and sellers (σ_M).

Interpretation in terms of "match value" and "trading security":

If f(x, y) CRTS : $\sigma_f^{-1} > \sigma_M \iff \sigma_f \cdot \sigma_M < 1$

UNDER SQUARE-ROOT-SUPERMODULARITY

Assume q^{-1} convex, first and second derivatives bounded.

Proposition: PAM \forall *B*, *S* \Leftrightarrow *f* is square-root-sm.

POSITIVE ASSORTATIVE MATCHING UNDER SQUARE-ROOT-SUPERMODULARITY

Assume q^{-1} convex, first and second derivatives bounded. **Proposition:** PAM $\forall B, S \Leftrightarrow f$ is square-root-sm.

$$f_{xy}(x,y) > a(\lambda) \frac{f_y(x,y)f_x(x,y)}{f(x,y)}, \ a(\lambda) = \frac{m'(\lambda)q'(\lambda)}{q(\lambda)m''(\lambda)}$$

Necessary: +AM ∀ distr. ⇒ Root-supermodularity

Reason: a(0) = 1/2, binding when some sellers cannot trade

$$q(\lambda) = m(\lambda)/\lambda$$

$$\Rightarrow q'(\lambda) = (m'(\lambda) - q(\lambda))/\lambda \quad \text{bounded} \quad \Rightarrow m'(0) = q(0)$$

$$\Rightarrow q''(\lambda) = (m'' - 2q')/\lambda \quad \text{bounded} \quad \Rightarrow q'(0) = m''(0)/2$$

$$\Rightarrow a(0) = m'(0)q'(0)/[m''(0)q(0)] = 1/2$$

Sufficient: Root-supermodularity \Rightarrow +AM \forall distr. Reason: $a(\lambda) \le 1/2$ if and only if $1/q(\lambda)$ is convex in λ .

NEGATIVE ASSORTATIVE MATCHING

OBTAINS ALWAYS UNDER WEAK SUBMODULARITY

$$f_{xy}(x,y) < a(\lambda) \frac{f_y(x,y)f_x(x,y)}{f(x,y)}, \ a(\lambda) = \frac{m'(\lambda)q'(\lambda)}{q(\lambda)m''(\lambda)}$$

Sufficient: f(x, y) weakly Sub-Mod \Rightarrow -AM \forall distr. Reason: inequality always holds

NEGATIVE ASSORTATIVE MATCHING

OBTAINS ALWAYS UNDER WEAK SUBMODULARITY

$$f_{xy}(x,y) < a(\lambda) \frac{f_y(x,y)f_x(x,y)}{f(x,y)}, \ a(\lambda) = \frac{m'(\lambda)q'(\lambda)}{q(\lambda)m''(\lambda)}$$

Sufficient: f(x, y) weakly Sub-Mod \Rightarrow -AM \forall distr. Reason: inequality always holds

Necessary?

Yes for Urn-Ball (m_1) : -AM \forall distr. \Rightarrow f(x, y) weakly Sub-Mod **No** for Telegraph-Line (m_5) : nowhere Root-Sup-Mod \Rightarrow -AM \forall distr.

GRAPHICAL INTERPRETATION

IC in (λ, p, y), project in (λ, p) and vary y

GRAPHICAL INTERPRETATION

• Parallel shifts, identical distance when f = x + y

GRAPHICAL INTERPRETATION

• Slope of iso-profit curve is flatter

GRAPHICAL INTERPRETATION

• Slope of iso-profit curve is flatter

GRAPHICAL INTERPRETATION

• High y_2 will match with low x_1

GRAPHICAL INTERPRETATION

• High x IC moves less when submodularity

GRAPHICAL INTERPRETATION

Need root-supermodularity for IC to move "far enough"

COMPARING LOGS AND ROOTS

COMPETITION supermodularity $\Rightarrow +AM$ submodularity $\Rightarrow -AM$ DEC. PRICE COMP root-supermodularity \Rightarrow +AM sub- and modularity \Rightarrow -AM

COMPARING LOGS AND ROOTS

 $\begin{array}{l} \text{COMPETITION} \\ \text{supermodularity} \\ \Rightarrow + \text{AM} \\ \text{submodularity} \\ \Rightarrow - \text{AM} \end{array}$

DEC. PRICE COMP root-supermodularity \Rightarrow +AM sub- and modularity \Rightarrow -AM

COMPARING LOGS AND ROOTS

 $\begin{array}{l} \text{COMPETITION} \\ \text{supermodularity} \\ \Rightarrow + \text{AM} \\ \text{submodularity} \\ \Rightarrow - \text{AM} \end{array}$

DEC. PRICE COMP root-supermodularity \Rightarrow +AM sub- and modularity \Rightarrow -AM

COMPARING LOGS AND ROOTS

COMPETITION supermodularity \Rightarrow +AM submodularity \Rightarrow -AM DEC. PRICE COMP root-supermodularity \Rightarrow +AM sub- and modularity \Rightarrow -AM

0

RANDOM SEARCH log-supermodularity \Rightarrow +AM log-submodularity \Rightarrow -AM

-AM

COMPARING LOGS AND ROOTS

 $\begin{array}{l} \text{COMPETITION} \\ \text{supermodularity} \\ \Rightarrow + \text{AM} \\ \text{submodularity} \\ \Rightarrow - \text{AM} \end{array}$

DEC. PRICE COMP root-supermodularity \Rightarrow +AM sub- and modularity \Rightarrow -AM

COMPARING LOGS AND ROOTS

 $\begin{array}{l} \text{COMPETITION} \\ \text{supermodularity} \\ \Rightarrow +\text{AM} \\ \text{submodularity} \\ \Rightarrow -\text{AM} \end{array}$

DEC. PRICE COMP root-supermodularity \Rightarrow +AM sub- and modularity \Rightarrow -AM

EXISTENCE

PROPOSITION

If f(x, y) is \overline{n} -root-supermodular (or nowhere \underline{n} -rs), then there exists an equilibrium for all type distributions.

PROOF.

- construct equilibrium, monotonically increasing (+AM)
- solution to FOCs satisfies system of 2 differential equations in λ and μ with the appropriate boundary conditions
- verify SOCs along equilibrium allocation μ^{*}
- establish this is a global maximum by considering different solutions to the FOCs and showing that none other exist

EFFICIENCY

+AM CONSTRAINED EFFICIENT UNDER ROOT-SUPERMODULARITY

Distribution for buyers: $D_b : \mathcal{X} \times \mathcal{Y} \to [0, 1]$ Distribution for sellers: $D_s : \mathcal{X} \times \mathcal{Y} \to [0, S(\bar{y})]$

Planner's program:

$$\begin{split} \max_{D_b,D_s,\lambda^P} &\int m(\lambda^P(x,y))f(x,y)dD_s\\ \text{s.t.} \quad &\int_{\mathcal{A}\times\mathcal{Y}} dD_b \leq \int_{\mathcal{A}} dB \; \forall \mathcal{A} \subset \mathcal{X} \quad \text{and} \quad \int_{\mathcal{X}\times\mathcal{A}} dD_s \leq \int_{\mathcal{A}} dS \; \forall \mathcal{A} \subset \mathcal{Y} \\ &\int_{\mathcal{A}} \lambda^P(\cdot,\cdot)dD_s \leq \int_{\mathcal{A}} dD_b \; \forall \mathcal{A} \subset \mathcal{X} \times \mathcal{Y} \end{split}$$

Under our root-supermodularity conditions for PAM and NAM:

- solution coincides with decentralized equilibrium
- Hosio's per (x,y) market, Root-SM to connect them

PRICES

The equilibrium price schedule under PAM satisfies

 η_q elasticity of q (likewise for m), b/s density of buyers to density of sellers along equilibrium path

Insights:

- 1 Prices might be non-monotone
- 2 Sufficient condition for monotonicity: $b(x)/s(y) < 1 \forall x, y$
- 3 But: expected payoffs are monotonic: $U'(x) = qf_x > 0$

EXTENSIONS AND ROBUSTNESS Entry of Firms

Entry at cost C(y)

Induces a particular type distribution. Combined with a particular matching function (urnball) Shi (2001) derives

$$\frac{\mathit{ff}_{xy}}{\mathit{f}_x\mathit{f}_y} > \frac{\mathit{Cf}_y(\mathit{f}_y - \mathit{C}_y)}{\mathit{C}_y(\mathit{fC}_y - \mathit{Cf}_y)}$$

No dependence on matching technology? Reconcile $RHS = a(\lambda)$? Economic Interpretation?

EXTENSIONS AND ROBUSTNESS Entry of Firms

Entry at cost C(y)

Induces a particular type distribution. Combined with a particular matching function (urnball) Shi (2001) derives

$$\frac{\mathit{ff}_{xy}}{\mathit{f}_x\mathit{f}_y} > \frac{\mathit{Cf}_y(\mathit{f}_y - \mathit{C}_y)}{\mathit{C}_y(\mathit{fC}_y - \mathit{Cf}_y)}$$

No dependence on matching technology? Reconcile $RHS = a(\lambda)$? Economic Interpretation?

Can be replicated by substituting free entry and Hosios into

$$\frac{\mathit{ff}_{xy}}{\mathit{f}_x\mathit{f}_y} \geq \mathit{a}(\lambda(y))$$

The general result highlights exactly the interplay between complementarities in production vs complementarities in matching (e.g. under CES RHS is constant).

EXTENSIONS AND ROBUSTNESS Entry of Firms

Entry at cost C(y)

Induces a particular type distribution. Combined with a particular matching function (urnball) Shi (2001) derives

$$\frac{\mathit{ff}_{xy}}{\mathit{f}_x\mathit{f}_y} > \frac{\mathit{Cf}_y(\mathit{f}_y - \mathit{C}_y)}{\mathit{C}_y(\mathit{fC}_y - \mathit{Cf}_y)}$$

No dependence on matching technology? Reconcile $RHS = a(\lambda)$? Economic Interpretation?

Can be replicated by substituting free entry and Hosios into

$$\frac{\mathit{ff}_{xy}}{\mathit{f}_x\mathit{f}_y} \geq \mathit{a}(\lambda(y)) \Leftrightarrow \frac{\mathit{ff}_{xy}}{\mathit{f}_x\mathit{f}_y} > -\ln(1-\frac{\mathit{C}_y}{\mathit{f}_y})^{-1} + 1 - \frac{\mathit{f}_y}{\mathit{C}_y}$$

The general result highlights exactly the interplay between complementarities in production vs complementarities in matching (e.g. under CES RHS is constant).

EXTENSIONS AND ROBUSTNESS

THE CLASS OF CES MATCHING FUNCTIONS

$$m(\lambda) = (1 + k\lambda^{-r})^{-1/r}$$

$$[M(\beta, \sigma) = (\beta^r + k\sigma^r)^{-1/r}\beta\sigma]$$

 $r > 0, \ k > 1, \ a(\lambda) = (1 + r)^{-1}$ constant

Proposition: Fix the type distributions. There is

- +*AM* if *f* is *n*-root-supermodular; $(n = \frac{1+r}{r})$
- -AM if f is nowhere n-root-supermodular; $(n = \frac{1+r}{r})$

Corollary: CES with elasticity e, then PAM under:

- 1 Supermodularity if e = 0 (Leontief);
- 2 Square-Root-Supermodularity if $e = \frac{1}{2}$ (Telegraph Line);
- 3 Log-Supermodularity if e = 1 (Cobb-Douglas).

EXTENSIONS AND ROBUSTNESS

GENERAL PAYOFFS & DYNAMIC FRAMEWORK

Dynamic Framework:

$$\max_{\lambda \in \overline{\mathbb{R}}_+} m(\lambda) \left[1 - \delta \left(1 - m(\lambda) \right) \right]^{-1} p$$

s.t. $q(\lambda) \left[1 - \delta \left(1 - q(\lambda) \right) \right]^{-1} (f(x, y) - p) = U(x)$

Necessary and sufficient condition for +AM:

$$f_{xy}(x,y) \ge A(\lambda,\delta)a(\lambda)\frac{f_x(x,y)f_y(x,y)}{f(x,y)}$$

where

1
$$A(\lambda, \delta) \in [0, 1]$$

- 2 $\lim_{\lambda \to 0} A(\lambda, \delta) = 1$ for all $\delta \in [0, 1)$,
- $3 \ \lim_{\delta \to 1} A(\lambda, \delta) = 0 \text{ for all } \lambda > 0.$

EXTENSIONS AND ROBUSTNESS

VANISHING FRICTIONS

Two approaches to vanishing frictions:

over time $\delta \rightarrow$ 1, or change in matching function

- root-supermodularity necessary for +AM for any frictions
- but necessary only at vanishing set of types

Illustration: changing matching function

CONCLUSION

- Complementarities are a source of high productivity in many environments (goods, labor, neighborhood,...)
- Imperfections in trade, but prices play allocative role
- Role of prices: ex-ante sorting, reduces frictions
- Highlights the interplay between frictions and match value:
 - 1 Match Value: tendency for +AM (if supermodular)
 - 2 Frictions: tendency for -AM (a-modular $\Rightarrow -AM$)
- simple trade-off: Becker vs Elasticity in Matching
- root-supermodular: point where effect (1) outweighs (2)

APPENDIX SLIDES

DERIVATION OF THE PROGRAM

Seller y:

$$max_{p\in \mathcal{P}}m(\lambda(p, y))p(y)$$
(3)

where $\lambda(y, p)$, satisfies buyer optimization

$$\begin{array}{lll} U(x) &=& q(\lambda(p,y))[f(x,y)-p(y)], \text{ for } x=\mu^{\star}(y)\\ U(x') &\geq& q(\lambda(p,y))[f(x',y)-p(y)], \text{ for all } x' \end{array}$$

Seller *y*'s problem is equivalent to $(p \rightarrow \lambda \text{ and set } p \text{ s.t. attract } x \text{ that gives highest possible } \lambda$; cf. Competing Mechanisms):

s.t.
$$\begin{aligned} \max_{x,\rho,\lambda} \pi &= m(\lambda)p\\ \frac{m(\lambda)}{\lambda} [f(x,y) - p] &= U(x). \end{aligned}$$

Equivalence of the two problems. Fix p, then program (4) and

$$\max_{x,\lambda} \pi = m(\lambda)p$$

s.t.
$$\frac{m(\lambda)}{\lambda}[f(x,y) - p] = U(x).$$
Assortative Matching

COMPARING LOGS AND ROOTS

Assortative Matching

COMPARING LOGS AND ROOTS

