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MOTIVATION

• Role of prices in the classic assignment problem? Complemen-
tarities are common in:
• labor market
• business partnerships
• product markets (car quality, driver’s milage) ; (size of house, size of family)

• Becker (1973): competitive matching market
• full information about prices and types, perfect trade
• Concern: important trade imperfections (unemployment, waiting times)

• Shimer and Smith (2000): random search
• no information about prices and types, imperfect trade
• Concern: No information is a strong assumption

• Our approach: decentralized price competition
• full information about prices and types, imperfect trade

(e.g. due to mis-coodination)
(competitive search / directed search)



MOTIVATION

• We uncover a natural economic explanation for the forces
that govern the matching patterns (when good types match with other good

types?)

• Insights:
• New condition for positive sorting

(between Becker and Shimer-Smith)
• New condition for negative sorting
• Clear economic interpretation of the driving forces



MOTIVATION

• Two key aspects to matching:
(1) The quality of the match ("match value motive"):

+AM only for strong complementarity

: root-supermodularity
(generalized: 1/(1− a) - root-supermodularity, where a is el. of subst. in matching)

(2) The probability (speed) of trade ("trading-security"):

–AM even with some supermodularity: nowhere root-sm

complementarities

ES−1

︸ ︷︷ ︸
(1) Becker (1973)

− frictions

ES

︸ ︷︷ ︸
(2) bad types facilitate trade (insurance)

> 0
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THE MODEL

• Players
• Measure S(1) sellers: observable types y ∈ [y , ȳ ] dist S(y)
• Measure 1 buyers: private type x ∈ [x , x̄ ] i.i.d. from B(x)
• Unit demands and supplies

• Payoffs of trade between (x , y) at price p:
• Buyer: utility f (x , y)− p
• Seller: profit p
• No trade: payoffs normalized to zero



THE MODEL
THE EXTENSIVE FORM

2 stage extensive form:
1 Sellers post prices: G(y ,p) seller distribution of (y ,p)

2 Buyers observe G and choose y ,p
• H(y ,p) buyer distribution over (y ,p).
• If buyer meets such a seller, he gets the good and pays p

Matching Technology:
• Let λ be buyer-seller ratio (depends on (y ,p))
• Matching prob.: Seller m(λ); Buyer: q(λ) = m(λ)/λ

• m,q ∈ [0,1], m′ > 0, q′ < 0 , m′′ < 0



THE MODEL
MATCHING FUNCTION

Interpretation of different λ(y ,p)

1 anonymous strategies (buyer miscoordination)
2 spacial separation (Acemoglu 1997)
3 market makers providing trading platforms (Moen 1997)

Examples of Matching Function

1 anonymous strategies [urn-ball]: m1(λ) = 1− e−λ

2 fraction 1− β buyers get lost: m2(λ) = 1− e−βλ

3 random on island [telegraph-line]: m3(λ) = λ/(1 + λ)

4 CES: m4(λ) = (1 + kλ−r )−1/r

Number of matches: M(b, s) = sM(b
s ,1) = sm(λ)



PAYOFFS AND OPTIMAL DECISIONS GIVEN G AND H
• Queue length λ(y ,p) on equilibrium path (given G and H):∫

A
λ(·, ·)dG =

∫
A

dH ∀ A ⊂ Y × P,

• Stage 2: Buyer x obtains utility U(x) according to

max
(y,p)∈suppG∪z

q(λ(y ,p))(f (x , y)− p). (1)

• Stage 1: Seller y optimizes according to

max
p∈P

m(λ(y ,p))p. (2)

• Subgame Perfection "off-equilibrium-path"
Acemoglu and Shimer (1999b): λ(y ,p) s.t.

U(x) = q(λ(y ,p)) (f (x , y)− p) for some x
U(x) ≥ q(λ(y ,p)) (f (x , y)− p) for all x



EQUILIBRIUM

Recall:

(1) Buyer’s Problem: max(y,p)∈suppG∪z q(λ(y ,p))(f (x , y)− p)

(2) Seller’s Problem: maxp∈P m(λ(y ,p))p

DEFINITION
An equilibrium is a pair (G?,H?) that have full measure and for all
measurable subsets A of the quality-price space Y × P ∪ z :

Sellers: G?(A) ≤ S(y ∈ Y | ∃ p that solves (2) and (y ,p) ∈ A)

Buyers: H?(A) ≤ B(x ∈ X | ∃ (y ,p) that solves (1) and (y ,p) ∈ A).



ASSORTATIVE MATCHING
ASSIGNMENT FUNCTION

DEFINITION (ASSIGNMENT FUNCTION)
µ(y) ∈ X : buyer type that wants to trade with seller y

Assortative Matching
• µ′(y) > 0: Positive Assortative Matching (+AM) (for

matched types)

• µ′(y) < 0: Negative Assortative Matching (–AM) (for
matched types)



ASSORTATIVE MATCHING
ROOT-SUPERMODULARITY

DEFINITION
A function f (x , y) is:
Supermodular ∂2f (x ,y)

∂x∂y > 0 ⇔ fxy (x , y) > 0

Log-supermodular ∂2 log f (x ,y)
∂x∂y > 0 ⇔ fxy (x , y) >

fx (x ,y)fy (x ,y)
f (x ,y)

Root-supermodular ∂2
√

f (x ,y)

∂x∂y > 0 ⇔ fxy (x , y) > 1
2

fx (x ,y)fy (x ,y)
f (x ,y)

n-root-supermodular ∂2 n
√

f (x ,y)

∂x∂y > 0 ⇔ fxy (x , y) > n−1
n

fx (x ,y)fy (x ,y)
f (x ,y)

Extreme cases of n-root-supermodular:
n = 1: Supermodular; n→∞ log-supermodular
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ASSORTATIVE MATCHING
LOG – ROOT – SUPERMODULARITY

f (x, y)

x

y

y

xy x

f (x, y)

f (x, y)

f (x, y)

f (x, y)

Supermodular: fxy > 0

Example f = (x + y)α, α > 1



ASSORTATIVE MATCHING
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ASSORTATIVE MATCHING
LOG – ROOT – SUPERMODULARITY

f (x, y)

x

y

y

xy x

f (x, y)

f (x, y)

f (x, y)

f (x, y)

Supermodular: fxy > 0
√

f -sup.: fxy >
1
2 fx fy/f log f -sup.: fxy > 1fx fy/f

Example f = (x + y)α, α > 1 f = (x + y)α , α > 2 f = βx+y



ASSORTATIVE MATCHING
MAIN INSIGHTS

• n-root-supermod needed to overcome NAM (n ∈ [0,1])

• n equals elasticity of substitution in matching
• n results simple (efficiency) trade-off

• complementarities in production
• complementarities in search technology



ILLUSTRATION OF -AM
PRIVATE VALUES

1 .

Shut down :

The quality of the match.
2 . The probability (speed) of trade.

• Total valuation: f (x , y) = x + y
(e.g. opportunity cost to seller: y = −c)

• Frictionless: optimal assignment is indeterminate
(no "match value motive")

• Frictions: Equilibrium is –AM

• High value buyer pays high p to avoid no-sale
("trading-security motive")

• Low type seller is more interested in price than prob.
(so low seller types provide trading security for buyers)
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ILLUSTRATION OF -AM
PRIVATE VALUES

• With private values: single crossing
• Buyers’ indifference curves in 2-dimensional plane

λ

p

x1
x2 > x1



ILLUSTRATION OF -AM
PRIVATE VALUES

• With private values: single crossing
• Sellers’ isoprofit curves in 2-dimensional plane

λ

p

y2 > y1

y1



ILLUSTRATION OF -AM
PRIVATE VALUES

• With private values: single crossing
• –AM: High y2 matches with low x1

λ

p

x1
x2 > x1

y2 > y1

y1



ASSORTATIVE MATCHING
MAIN THEOREMS

There exist n̄ and n in [0,1] such that

THEOREM (+AM UNDER n̄-ROOT-SUPERMODULARITY)
+AM for all type distr. iff f (x , y) is n̄- root-supermodular.
-AM for all type distr. iff f (x , y) is nowhere n-root-supermod.

THEOREM (EFFICIENCY)
The assortative assignment is constrained efficient.

Proposition: q−1 convex and derivatives bounded:
+AM for all distr. iff f (x , y) is square-root-supermodular.
Corollary: -AM for all distr. if f (x , y) is weakly submod.

Proposition: If matching function is not CES
+AM for some distr. even if f (x , y) not n̄-root-supermod.
Proposition: If matching function is not CES
-AM for some distr. even if f (x , y) is n-root-supermod.
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POSITIVE ASSORTATIVE MATCHING
PROOF: +AM IFF f (x , y) n̄-ROOT-SUPERMODULAR

Seller y :
maxp∈ Pm(λ(p, y))p

where λ(y ,p), satisfies buyer optimization

U (x) = q(λ(p, y))[f (x , y)− p(y)], for x = µ?(y)

U (x ′) ≥ q(λ(p, y))[f (x ′, y)− p(y)], for all x ′

Seller y ’s problem is equivalent to (for any p attract x that gives
highest possible λ; cf. Competing Mechanisms):

max
x ,p,λ

π = m(λ)p

s.t.
m(λ)

λ
[f (x , y)− p] = U(x).



POSITIVE ASSORTATIVE MATCHING
PROOF: +AM IFF f (x , y) n̄-ROOT-SUPERMODULAR

After substituting the constraint:

max
x∈X ,λ≥0

m(λ)f (x , y)− λU(x).

First Order Conditions:

m′(λ)f (x , y)− U(x) = 0
m(λ)fx (x , y)− λU ′(x) = 0

Hessian for SOC:(
m′′(λ)f (x , µ) m′(λ)fx (x , µ)− U ′(x)

m′(λ)fx (x , µ)− U ′(x) m(λ)fxx (x , µ)− λU ′′(x)

)
.

Along Equilibrium Allocation:

Question: a(λ)? Magnitude?

µ′

fxy − m′(λ)q′(λ)

q(λ)m′′(λ)︸ ︷︷ ︸
a(λ)

fx (x , µ)fy (x , µ)

f (x , µ)

 > 0,
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INTUITION AND EXPLANATION
What is a(λ)?

• It is the elasticity of substitution σM between buyers and sellers
in the matching function M(b, s) = sm(b/s).

a(λ) =
Mb(λ,1)Ms(λ,1)

Mbs(λ,1)M(λ,1)

Why is it important?

• The Hosios’ condition: entry of sellers into one (x , y) based on
derivative of matches with respect to sellers (Ms).

• Our condition connects different (x , y) combinations via the
elasticity of substitution between buyers and sellers (σM ).

Interpretation in terms of "match value" and "trading security":

fxy︸︷︷︸
match value improvement

− a(·)fx fy/f︸ ︷︷ ︸
loss due to no trade

> 0

If f (x , y) CRTS : σ−1
f > σM ⇐⇒ σf · σM < 1
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in the matching function M(b, s) = sm(b/s).

a(λ) =
Mb(λ,1)Ms(λ,1)

Mbs(λ,1)M(λ,1)

Why is it important?

• The Hosios’ condition: entry of sellers into one (x , y) based on
derivative of matches with respect to sellers (Ms).

• Our condition connects different (x , y) combinations via the
elasticity of substitution between buyers and sellers (σM ).

Interpretation in terms of "match value" and "trading security":

fxy︸︷︷︸
match value improvement

− a(·)fx fy/f︸ ︷︷ ︸
loss due to no trade

> 0

If f (x , y) CRTS : σ−1
f > σM ⇐⇒ σf · σM < 1



POSITIVE ASSORTATIVE MATCHING
UNDER SQUARE-ROOT-SUPERMODULARITY

Assume q−1 convex, first and second derivatives bounded.

Proposition: PAM ∀ B,S ⇔ f is square-root-sm.

fxy (x , y) > a(λ)
fy (x , y)fx (x , y)

f (x , y)
, a(λ) =

m′(λ)q′(λ)

q(λ)m′′(λ)

Necessary: +AM ∀ distr. ⇒ Root-supermodularity

Reason: a(0) = 1/2, binding when some sellers cannot trade

q(λ) = m(λ)/λ

⇒ q′(λ) = (m′(λ)− q(λ))/λ bounded ⇒ m′(0) = q(0)

⇒ q′′(λ) = (m′′ − 2q′)/λ bounded ⇒ q′(0) = m′′(0)/2
⇒ a(0) = m′(0)q′(0)/[m′′(0)q(0)] = 1/2

Sufficient: Root-supermodularity⇒ +AM ∀ distr.

Reason: a(λ) ≤ 1/2 if and only if 1/q(λ) is convex in λ.
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NEGATIVE ASSORTATIVE MATCHING
OBTAINS ALWAYS UNDER WEAK SUBMODULARITY

fxy (x , y) < a(λ)
fy (x , y)fx (x , y)

f (x , y)
, a(λ) =

m′(λ)q′(λ)

q(λ)m′′(λ)

Sufficient: f (x , y) weakly Sub-Mod⇒ -AM ∀ distr.
Reason: inequality always holds

Necessary?

Yes for Urn-Ball (m1): -AM ∀ distr. ⇒ f (x , y) weakly Sub-Mod

No for Telegraph-Line (m5): nowhere Root-Sup-Mod⇒ -AM ∀ distr.
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ASSORTATIVE MATCHING
GRAPHICAL INTERPRETATION

• IC in (λ,p, y), project in (λ,p) and vary y

λ

p

(λ′, p′)

(λ∗, p∗)

x1

y1

x2 > x1



ASSORTATIVE MATCHING
GRAPHICAL INTERPRETATION

• Parallel shifts, identical distance when f = x + y

λ

p

(λ′, p′)

(λ∗, p∗)

x1

y2 > y1
y1y1

x2 > x1

x1

x2 > x1



ASSORTATIVE MATCHING
GRAPHICAL INTERPRETATION

• Slope of iso-profit curve is flatter
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ASSORTATIVE MATCHING
GRAPHICAL INTERPRETATION

• High y2 will match with low x1

λ

p

(λ′, p′)

(λ∗, p∗)

x1

y2 > y1
y1y1

x2 > x1

x1

x2 > x1



ASSORTATIVE MATCHING
GRAPHICAL INTERPRETATION

• High x IC moves less when submodularity

λ

p

(λ′, p′)

(λ∗, p∗)

x1

y2 > y1
y1y1

x2 > x1

x1

x2 > x1



ASSORTATIVE MATCHING
GRAPHICAL INTERPRETATION

• Need root-supermodularity for IC to move "far enough"

λ

p

(λ′, p′)

(λ∗, p∗)

x1

y2 > y1
y1y1

x2 > x1

x1

x2 > x1



ASSORTATIVE MATCHING
COMPARING LOGS AND ROOTS

COMPETITION
supermodularity
⇒ +AM
submodularity
⇒ –AM

DEC. PRICE COMP
root-supermodularity
⇒ +AM
sub- and modularity
⇒ –AM

RANDOM SEARCH
log-supermodularity
⇒ +AM
log-submodularity
⇒ –AM

0 fxy

+AM
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ASSORTATIVE MATCHING
COMPARING LOGS AND ROOTS

COMPETITION
supermodularity
⇒ +AM
submodularity
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DEC. PRICE COMP
root-supermodularity
⇒ +AM
sub- and modularity
⇒ –AM

RANDOM SEARCH
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0 fxy
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EXISTENCE

PROPOSITION
If f (x , y) is n̄-root-supermodular (or nowhere n-rs), then there
exists an equilibrium for all type distributions.

PROOF.

• construct equilibrium, monotonically increasing (+AM)

• solution to FOCs satisfies system of 2 differential equations in λ
and µ with the appropriate boundary conditions

• verify SOCs along equilibrium allocation µ∗

• establish this is a global maximum by considering different
solutions to the FOCs and showing that none other exist



EFFICIENCY
+AM CONSTRAINED EFFICIENT UNDER ROOT-SUPERMODULARITY

Distribution for buyers: Db : X × Y → [0,1]
Distribution for sellers: Ds : X × Y → [0,S(ȳ)]

Planner’s program:

max
Db,Ds,λP

∫
m(λP(x , y))f (x , y)dDs

s.t.
∫
A×Y

dDb ≤
∫
A

dB ∀A ⊂ X and
∫
X×A

dDs ≤
∫
A

dS ∀A ⊂ Y∫
A
λP(·, ·)dDs ≤

∫
A

dDb ∀A ⊂ X × Y

Under our root-supermodularity conditions for PAM and NAM:

• solution coincides with decentralized equilibrium

• Hosio’s per (x,y) market, Root-SM to connect them



PRICES

The equilibrium price schedule under PAM satisfies

p′(y) = fy︸︷︷︸
Becker(1973)

+

(
ηqfx − b

s
ηmfy

)
a︸ ︷︷ ︸

Compensation through trading probabilities

ηq elasticity of q (likewise for m), b/s density of buyers to density of sellers along equilibrium path

Insights:

1 Prices might be non-monotone

2 Sufficient condition for monotonicity: b(x)/s(y) < 1 ∀ x , y

3 But: expected payoffs are monotonic: U ′(x) = qfx > 0



EXTENSIONS AND ROBUSTNESS
ENTRY OF FIRMS

Entry at cost C(y)

Induces a particular type distribution. Combined with a particular
matching function (urnball) Shi (2001) derives

ffxy

fx fy
>

Cfy (fy − Cy )

Cy (fCy − Cfy )

No dependence on matching technology? Reconcile RHS = a(λ)?
Economic Interpretation?

Can be replicated by substituting free entry and Hosios into

ffxy

fx fy
≥ a(λ(y))

⇔ ffxy

fx fy
> − ln(1− Cy

fy
)−1 + 1− fy

Cy

The general result highlights exactly the interplay between
complementarities in production vs complementarities in matching
(e.g. under CES RHS is constant).
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EXTENSIONS AND ROBUSTNESS
THE CLASS OF CES MATCHING FUNCTIONS

m(λ) = (1 + kλ−r )−1/r

[M(β, σ) = (βr + kσr )−1/rβσ]

r > 0, k > 1, a(λ) = (1 + r)−1 constant

Proposition: Fix the type distributions. There is

• +AM if f is n-root-supermodular; (n = 1+r
r )

• −AM if f is nowhere n-root-supermodular; (n = 1+r
r )

Corollary: CES with elasticity e, then PAM under:

1 Supermodularity if e = 0 (Leontief);

2 Square-Root-Supermodularity if e = 1
2 (Telegraph Line);

3 Log-Supermodularity if e = 1 (Cobb-Douglas).



EXTENSIONS AND ROBUSTNESS
GENERAL PAYOFFS & DYNAMIC FRAMEWORK

Dynamic Framework:

max
λ∈R+

m(λ) [1− δ (1−m(λ))]−1 p

s.t. q(λ) [1− δ (1− q(λ))]−1 (f (x , y)− p) = U(x)

Necessary and sufficient condition for +AM:

fxy (x , y) ≥ A(λ, δ)a(λ)
fx (x , y)fy (x , y)

f (x , y)

where

1 A(λ, δ) ∈ [0, 1]

2 limλ→0 A(λ, δ) = 1 for all δ ∈ [0, 1),

3 limδ→1 A(λ, δ) = 0 for all λ > 0.



EXTENSIONS AND ROBUSTNESS
VANISHING FRICTIONS

Two approaches to vanishing frictions:

over time δ → 1, or change in matching function

• root-supermodularity necessary for +AM for any frictions
• but necessary only at vanishing set of types

Illustration: changing matching function

m(λ; δn)

λ1

1

m(λ)

δn → 1



CONCLUSION

• Complementarities are a source of high productivity in
many environments (goods, labor, neighborhood,...)

• Imperfections in trade, but prices play allocative role
• Role of prices: ex-ante sorting, reduces frictions

• Highlights the interplay between frictions and match value:
1 Match Value: tendency for +AM (if supermodular)

2 Frictions: tendency for –AM (a-modular⇒ –AM)

• simple trade-off: Becker vs Elasticity in Matching
• root-supermodular: point where effect (1) outweighs (2)



APPENDIX SLIDES
DERIVATION OF THE PROGRAM

Seller y :
maxp∈ Pm(λ(p, y))p(y) (3)

where λ(y ,p), satisfies buyer optimization

U (x) = q(λ(p, y))[f (x , y)− p(y)], for x = µ?(y)

U (x ′) ≥ q(λ(p, y))[f (x ′, y)− p(y)], for all x ′

Seller y ’s problem is equivalent to (p → λ and set p s.t. attract
x that gives highest possible λ; cf. Competing Mechanisms):

max
x ,p,λ

π = m(λ)p

s.t.
m(λ)

λ
[f (x , y)− p] = U(x).

Equivalence of the two problems. Fix p, then program (4) and

max
x ,λ

π = m(λ)p

s.t.
m(λ)

λ
[f (x , y)− p] = U(x).

give the same trading probability m(λ as program (3),
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