IDENTIFYING SORTING - IN THEORY

Jan Eeckhout¹ Philipp Kircher²

¹ ICREA - UPF Barcelona – ² Oxford University and UPenn

Andorra June 5, 2010

- 1 Do more productive workers work in more prod. jobs?
 - Positive exercise: learn about production / search process
- 2 Is sorting important? How big is it?
 - Normative exercise: matters for policy (depends on complementarities)

- Constraint: use wage data only (most precise measure of job productivity) and matched employer-employee data
- Objective a minimalist, stylized model (assignment model) that allows us to show:
 - 1 Identifying the *sign* (1.) is impossible
 - Reason: Workers get mainly paid by their marginal product

- Constraint: use wage data only (most precise measure of job productivity) and matched employer-employee data
- Objective a minimalist, stylized model (assignment model) that allows us to show:
 - Identifying the sign (1.) is impossible Reason: Workers get mainly paid by their marginal product
 - 2 Identifying the *strength* (2.) is possible Choices reveal how big complementarities/substitutes are.

- Constraint: use wage data only (most precise measure of job productivity) and matched employer-employee data
- Objective a minimalist, stylized model (assignment model) that allows us to show:
 - Identifying the sign (1.) is impossible Reason: Workers get mainly paid by their marginal product
 - 2 Identifying the *strength* (2.) is possible Choices reveal how big complementarities/substitutes are.
 - 3 Cannot be done with "standard" fixed-effect method

THE FIXED EFFECTS REGRESSION

• Evidence from fixed effects regressions (Abowd, Kramarz, and Margolis (1999), Abowd et al (2004),....):

$$\log w_{it} = a_{it}\beta + \delta_i + \psi_{j(i,t)} + \varepsilon_{it}$$

where:

- *a_{it}*: time varying observables of workers
- δ_i : worker fixed effect
- ε_{it} : orthogonal residual
- Correlation of δ_i and ψ_j between matched pairs is taken as an estimate of the degree of sorting
- Repeatedly established: zero or negative correlation ⇒ no complementarities in the production technology?

Our approach

- Characterize wages in the frictionless model
- Extend to search frictions $\Rightarrow \exists$ mismatch in equilibrium
- Derive analytically what we can learn from wage data

Relates to recent literature:

- Gautier, Teulings (2004, 2006)
 - Second-order approximation to steady-state; assumes PAM
- Lopes de Melo (2008), Lise, Meghir, Robin (2008), Bagger-Lentz (2008)
 - Simulated search models with strong complementarities give nonetheless small or negative fixed effect estimates

MOTIVATION Our Findings

From wage data alone:

- 1 No identification of sign of sorting from wages:
 - on frictionless equilibrium allocation Prop 1
 - off-equilibrium set Prop 2
 - economy with frictions (constant costs) Prop 3
- 2 Fixed effects pick up neither sign nor strength Prop 4
- 3 BUT we can identify strength Prop 5 This is economically more meaningful than sign
- 4 Discussion: discounting, type-dependent search costs [some, (small) identification], more general technologies...

THE MODEL

PLAYERS AND PRODUCTION

- Worker type *x*, distributed according to Γ (uniform)
- Job type *y*, distributed according to Υ (uniform)
- Output $f(x, y) \ge 0$
- Common rankings: $f_x > 0$ and $f_y > 0$
- Cross-partials either always positive (*f* ∈ *F*⁺ if *f_{xy}* > 0) or always negative (*f* ∈ *F*⁻ if *f_{xy}* < 0): monotone matching
- Examples of production functions we will use:

$$\begin{aligned} f^+(x,y) &= \alpha x^{\theta} y^{\theta} + h(x) + g(y), \\ f^-(x,y) &= \alpha x^{\theta} (1-y)^{\theta} + h(x) + g(y), \end{aligned}$$

where $g(\cdot)$ and $h(\cdot)$ are increasing functions.

THE FRICTIONLESS MODEL ON THE EQUILIBRIUM PATH

- Assignment of workers to firms: $\mu(x) = y$ (worker x to firm y)
- Wage schedule: w(x, y)
- Profit schedule: $\pi(x, y) = f(x, y) w(x, y)$
- Equilibrium: (μ, w) such that $\forall x, y$:

$$w(x,\mu(x)) \ge w(x,y)$$

 $\pi(\mu^{-1}(y),y) \ge \pi(x,y)$

THE FRICTIONLESS MODEL

Firm maximization:

$$\max_{x} f(x, y) - w(x, y)$$

• FOC:

$$f_x(x,y) - \frac{\partial w(x,y)}{\partial x} = 0$$

• Let $w^*(x)$ be the equilibrium wage of worker x

$$w^{\star}(x) = \int_0^x f_x(\tilde{x},\mu(\tilde{x}))d\tilde{x} + w_0,$$

• Profits: $\pi^*(y) = \int_0^y f_y(\mu^{-1}(\tilde{y}), \tilde{y}) d\tilde{y} - w_0$

THE FRICTIONLESS MODEL

• Firm maximization:

$$\max_{x} f(x, y) - w(x, y)$$

• FOC:

$$f_x(x,y) - \frac{\partial w(x,y)}{\partial x} = 0$$

• Let $w^*(x)$ be the equilibrium wage of worker x

$$w^{\star}(x) = \int_0^x f_x(\tilde{x},\mu(\tilde{x}))d\tilde{x} + w_0,$$

• Profits:
$$\pi^{\star}(y) = \int_0^y f_y(\mu^{-1}(\tilde{y}), \tilde{y}) d\tilde{y} - w_0$$

- PAM if f supermodular $(f_{xy} > 0) \Rightarrow \mu(x) = x$ (from the SOC)
- NAM if f submodular $(f_{xy} < 0) \Rightarrow \mu(x) = 1 x$

THE FRICTIONLESS MODEL CANNOT IDENTIFY PAM/NAM

PROPOSITION (1)

For any $f^+ \in \mathcal{F}^+$ that induces PAM there exists a $f^- \in \mathcal{F}^-$ that induces NAM with identical equilibrium wages $w^*(x)$.

PROOF.

$$w^{\star,+}(x) = \int_0^x f_x^+(\tilde{x}, \tilde{x}) d\tilde{x} + w_0$$

$$w^{\star,-}(x) = \int_0^x f_x^-(\tilde{x}, 1 - \tilde{x}) d\tilde{x} + w_0$$

Sufficient: $f_{x}^{+}(\tilde{x}, \tilde{x}) = f_{x}^{-}(\tilde{x}, 1 - \tilde{x}).$ Define: $f^{-}(x, y) = f^{+}(x, 1 - y)$ on $[0, 1]^{2}$

Need: f^- increasing in y. If f_y^- is bounded, add linear term. If not, g(y) increases faster than $-f^+(x, 1 - y)$

THE FRICTIONLESS MODEL

EXAMPLE WITH $\alpha = +/-1, \theta = 1$

- Wages: $w(x, \mu(x)) = \frac{x^2}{2}$
- Derived from $f^+ = xy + y$ and $f^- = x(1 y) + y$

• But
$$\pi^{\star,+}(y) = \frac{y^2}{2}$$

 $\pi^{\star,-}(y) = y + \frac{(1-y)^2}{2}$, and $\pi^{\star,-}(x) = 1 - x + \frac{x^2}{2}$

THE FRICTIONLESS MODEL NO IDENTIFICATION OF PAM/NAM

- Based on wage data alone, we cannot "know" which are the good jobs (higher ranked y)
- The good worker matches with the most attractive firm
- Under NAM, the bad firm is more attractive because it pays higher wages

MISMATCH DUE TO SEARCH FRICTIONS

MISMATCH IN EQUILIBRIUM

Two Stage Search Process:

- 1 First, costless random meeting stage
 - one round of pairwise random meetings
 - if match is formed: wage as split of surplus over waiting
- 2 Second, if not matched: costly competitive matching
 - pay search cost *c* each
 - get matched according to the competitive assignment
 - production at end

MISMATCH DUE TO SEARCH FRICTIONS

MISMATCH IN EQUILIBRIUM

Two Stage Search Process:

- 1 First, costless random meeting stage
 - one round of pairwise random meetings
 - if match is formed: wage as split of surplus over waiting
- 2 Second, if not matched: costly competitive matching
 - pay search cost *c* each
 - get matched according to the competitive assignment
 - production at end
- For simplicity assume symmetry
 - $f_{xy}(x, y) = f_{xy}(y, x)$ for $f \in \mathcal{F}^+$
 - $f_{xy}(x, y) = f_{xy}(1 y, 1 x)$ for $f \in \mathcal{F}^-$
- Second stage payoffs: $w(x, \mu(x)) c$ and $\pi(\mu^{-1}(y), y) c$
- First stage: Match provided

$$f(x,y)-(w^{\star}(x)+\pi^{\star}(y)-2c)\geq 0$$

MISMATCH DUE TO SEARCH FRICTIONS THE EXAMPLE: $\theta = 1$

MISMATCH DUE TO SEARCH FRICTIONS WAGES

$$w(x,y) = \frac{1}{2} \left[f(x,y) - w(x,\mu) - \pi(\mu^{-1},y) + 2c \right] + w(x,\mu) - c$$

= $\frac{1}{2} \left[f(x,y) + w(x,\mu(x)) - \pi(\mu^{-1}(y),y) \right]$

MISMATCH DUE TO SEARCH FRICTIONS WAGES

$$w(x,y) = \frac{1}{2} \left[f(x,y) - w(x,\mu) - \pi(\mu^{-1},y) + 2c \right] + w(x,\mu) - c$$

= $\frac{1}{2} \left[f(x,y) + w(x,\mu(x)) - \pi(\mu^{-1}(y),y) \right]$

- From wages alone we cannot identify the sign of f_{xy}
- Here: we aim to identify the strength of f_{xy} (i.e. $|f_{xy}|$)

MISMATCH DUE TO SEARCH FRICTIONS BLISS POINT

Lemma: (Bliss Point) Wages w(x, y) are non-monotone in y.

 Example. Mediocre lawyer in top firm: paid less than in mediocre firm. Top firm must forego higher future profit

MISMATCH DUE TO SEARCH FRICTIONS

Decompose wage process:

$$w(x, y) = \delta(x) + \psi(y) + \varepsilon_{xy}, \qquad (1)$$

Unbiased δ and ψ (integrate over y and x, respectively)

$$\delta(x) = \int_{B(x)} \left[w(x,y) - \psi(y) \right] d\Upsilon(y|x), \tag{2}$$

$$\psi(\mathbf{y}) = \int_{\mathcal{A}(\mathbf{y})} \left[w(\mathbf{x}, \mathbf{y}) - \delta(\mathbf{x}) \right] d\Gamma(\mathbf{x}|\mathbf{y}), \tag{3}$$

Firm fixed effect δ is constant if Ψ is constant:

$$\psi(y) = \underbrace{\int_{\mathcal{A}(y)} \left[w(x,y) - w_{av}(x) \right] d\Gamma(x|y)}_{=:\Psi(y)} + \int_{\mathcal{A}(y)} \int_{\mathcal{B}(x)} \psi(\tilde{y}) d\Upsilon(\tilde{y}|x) d\Gamma(x|y)$$
(4)

MISMATCH DUE TO SEARCH FRICTIONS

INCONCLUSIVE FIRM FIXED EFFECT

PROPOSITION (4)

The firm fixed effect is ambiguous. It is zero under uniform distributions and $f(x, y) = \alpha xy + h(x) + g(y)$.

The firm effect Ψ is

$$\Psi(y) = \int_{y-\kappa}^{y+\kappa} \left[w(x,y) - w_{av}(x) \right] d\Gamma(x|y)$$

- Assuming a long panel: $w_{av}(x) = \int_{x-K}^{x+K} w(x,y) d\Upsilon(y|x)$
- Show that $\Psi' \ge 0$

$$\Psi'(y) = \int_{y-K}^{y+K} \frac{\partial w(x,y)}{\partial y} \gamma(x|y) dx + (w(y+K,y) - w_{av}(y+K)) \gamma(y+K|y) - (w(y-K,y) - w_{av}(y-K)) \gamma(y-K|y)$$

- First effect: change in matched type (Beckerian effect)
- Second effect: change in set of matched partners
- Both effects: ambiguous, often opposite sign, zero under uniform

IDENTIFYING THE STRENGTH OF SORTING

WITHOUT KNOWING THE SIGN

PROPOSITION (5)

We can identify strength of sorting, i.e., cross-partial $|f_{xy}|$.

Two parts:

- 1 Use wage gap to identify the cost of search c
- 2 Use range of matched types to identify $|f_{xy}|$
- 1. Wage Gap
 - Maximum wage in panel: identify type (optimal = max):

$$\overline{w}_k = \max_{t \in \{1, \dots, T\}} w_k^t$$

- $\Omega_W(\overline{w})$: distribution of maximum wages ($\Omega_F(\overline{w})$ for firms)
- Identify search by wage gap(where $\underline{w}_x = \min_{t \in \{1,...,T\}} w_x^t$):

$$\boldsymbol{c}=\overline{\boldsymbol{W}}_{\boldsymbol{X}}-\underline{\boldsymbol{W}}_{\boldsymbol{X}},$$

IDENTIFYING THE STRENGTH OF SORTING

WITHOUT KNOWING THE SIGN

- 2. Range of Matched Types
 - Search loss L(x, y) due to mismatch:

$$\begin{split} L(x,y) &= f(x,y) - \int_0^x f_X(\tilde{x},\mu(\tilde{x})) d\tilde{x} - \int_0^y f_y(\mu^{-1}(\tilde{y}),\tilde{y}) d\tilde{y} \\ &= -\int_{\mu^{-1}(y)}^x \int_{\mu^{-1}(\tilde{y})}^x |f_{Xy}(\tilde{x},\tilde{y})| d\tilde{x}d\tilde{y} \\ &= -\int_y^x \int_{\tilde{y}}^x |f_{Xy}(\tilde{x},\tilde{y})| d\tilde{x}d\tilde{y} \quad \text{(for PAM)} \end{split}$$

- Search decision: $L(x, \underline{y}(x)) = -2c$.
- This functional equation identifies |f_{xy}|: compares variation in matching sets (x - y(x)) to variation in wage (2c)
- If wage variation high, matching sets small ⇒ large loss from mismatch, i.e. the cross-partial large

IDENTIFYING THE STRENGTH OF SORTING WITHOUT KNOWING THE SIGN

• More structure (example): constant cross-partial α , then

$$-L(x,y) = |\alpha|(x^{\theta} - \underline{y}(x)^{\theta})^2 = 4c$$

use data on observed pairs *x*, *y* to estimate α , θ

IDENTIFYING THE STRENGTH OF SORTING WITHOUT KNOWING THE SIGN

• More structure (example): constant cross-partial α , then

$$\begin{aligned} -\mathcal{L}(x,y) &= |\alpha|(x^{\theta} - \underline{y}(x)^{\theta})^2 = 4c \\ \Leftrightarrow & x = \left(2\left(c/|\alpha|\right)^{1/2} - \underline{y}(x)^{\theta}\right)^{1/\theta} \end{aligned}$$

use data on observed pairs *x*, *y* to estimate α , θ

IDENTIFYING THE STRENGTH OF SORTING WITHOUT KNOWING THE SIGN

• More structure (example): constant cross-partial α , then

$$\begin{aligned} -\mathcal{L}(x,y) &= |\alpha|(x^{\theta} - \underline{y}(x)^{\theta})^2 = 4c \\ \Leftrightarrow & x = \left(2\left(c/|\alpha|\right)^{1/2} - \underline{y}(x)^{\theta}\right)^{1/\theta} \end{aligned}$$

use data on observed pairs x, y to estimate α, θ

• Total loss from search (mismatch minus perfect matching):

$$\mathcal{G} = \int_0^1 \int_0^1 L(x, y) dx dy = -|\alpha| \frac{\theta^2}{(2\theta + 1)(\theta + 1)^2}$$

GENERAL COSTS AND BARGAINING

Wage equation:

$$w(x, y) = \gamma[f(x, y) - w^{\star}(x) - \pi^{\star}(y) + c(x) + k(y)] + w^{\star}(x) - c(x),$$

where $w^*(x) - c(x)$ is the outside option. At the cutoff type:

$$\underline{W}(x) = W^{\star}(x) - C(x),$$

In the second period:

$$f(x^{\star}, y) = w^{\star}(x^{\star}) - \pi^{\star}(y) \Rightarrow w(x^{\star}, y) = \gamma[c(x^{\star}) + k(y)] + \underline{w}(x^{\star}),$$

which implies

$$c(x)+k(y)=-\frac{w(x^{\star},y)-\underline{w}(x^{\star})}{\gamma}.$$

We get identification from L = c(x) + k(y) evaluated at $x^*(y)$.

ALTERNATIVE APPROACHES

• Use of output/profit data.

But mostly available at firm level: how to attribute profits to an individual (CEO vs. factory worker)? (Haltiwanger et al. (1999), van den Berg and van Vuuren (2003), Mendes, van den Berg, Lindeboom (2007))

 \Rightarrow Need at least a theory of the firm

- Exogenous wage setting: Abowd, Kramarz, Lengermann, Perez-Duarte (2009):
 - "test a simple version of Becker's matching model"
 - assume a split of output: $\beta f(x, y)$
 - is *inconsistent* with Becker's (1973) equilibrium wages

CONCLUSIONS

- We cannot identify the sign of sorting from wage data
- · We can identify the strength: economically relevant
- Standard fixed effects get neither sign nor strength
- Discussion
 - 1 Identifying sign: attributing profit or output data
 - 2 More general technologies: horizontal vs vertical diff
 - 3 Different reasons for mismatch (e.g. productivity shocks)
 - 4 Type-Dependent Search Costs (e.g. discounting)
 - 5 On-the-job Search

IDENTIFYING SORTING - IN THEORY

Jan Eeckhout¹ Philipp Kircher²

¹ ICREA - UPF Barcelona – ² Oxford University and UPenn

Andorra June 5, 2010

TYPE-DEPENDENT SEARCH COSTS

DISCOUNTING – SHIMER-SMITH (2000) Result: Non-monotone wages also under discounting

- Discount factor β. Technology f⁺(x, y) = xy
- 1st period wages (surplus matching (split) + value waiting):

$$w^{+}(x,y) = \frac{1}{2} \left[xy - \beta \frac{x^{2}}{2} - \beta \frac{y^{2}}{2} \right] + \frac{1}{2} \beta \frac{x^{2}}{2}$$
$$= \frac{1}{2} xy + \beta \frac{x^{2}}{4} - \beta \frac{y^{2}}{4}$$

- Match if surplus is positive. [Matching set $A(y) = [\underline{K}y, \overline{K}y], K = \beta^{-1} \pm \sqrt{\beta^{-2} 1}$.]
- Under NAM technology, $f^{-}(x, y) = -xy + y$

$$w^{-}(x,y) = \frac{1}{2}x\tilde{y} + \beta\frac{x^{2}}{4} - \beta\frac{\tilde{y}^{2}}{4} + \frac{1}{2}(1-\beta)(1-\tilde{y})$$

- $w^+ \approx w^-$ small when $\beta \approx 1$: some, but small sign ident.
- Wage is also inverted U-shaped

MISMATCH DUE TO SEARCH FRICTIONS

NON-MONOTONE WAGES UNDER DISCOUNTING

k

NON-MONOTONICITIES ARISE GENERALLY

GENERAL TYPE-DEPENDENT SEARCH COSTS

Non-monotonicities with general search costs:

$$f(x,y)-(w^{\star}(x)+\pi^{\star}(y)-c(x)-c(y))\geq 0.$$

Discounting: $c(y) = (1 - \beta)\pi^*(x)$ Differing arrival rates: $c(y) = (1 - \alpha(y)\beta)\pi^*(x)$

Wages are non-monotonic (whenever $c'(y) \leq y$):

$$w(x,y) = \frac{1}{2}xy + \frac{1}{4}x^2 - \frac{1}{4}y^2 - \frac{1}{2}c(x) + \frac{1}{2}c(y)$$

$$\Rightarrow \quad \frac{\partial w}{\partial y} = \frac{1}{2}x - \frac{1}{2}y + c'(y)$$

- Non-monotonicities arise *always* when higher types reject some lower types (because then workers obtain their continuation value at the highest and lowest type willing to match).
- Even with OJS (fixed entry cost, then type realized): No opportunity cost for worker, but usually the firm cannot search while matched, and some matches are not formed.