Occupational Sorting and Development

Jan Eeckhout ${ }^{1}$ Boyan Jovanovic ${ }^{2}$

${ }^{1}$ UPenn
${ }^{2} \mathrm{NYU}$
Minnesota Workshop in Macroeconomic Theory August 2, 2007

Motivation

Impact of openness on gains from trade and sorting

- Openness has increased in the last 30 years
- Labor services (both workers and management) increasingly flow across borders
- Distant agents produce together due to improved transportation/information technology (trade of inputs, outsourcing of services, multinationals, VC management exports services, etc.)
- Our theory: increased trade of labor services \Rightarrow efficient reallocation: occupational sorting (manager vs. worker)
- Theoretical issue: separate standard gains from trade effect from the sorting effect

Theoretical Exercise

- Start with autarky
- Introduce global labor market
- Who gains most? The poor and the rich
- Who gains least? The middle class
- Implied sorting effect is qualitatively big relative to standard trade effect (in examples)

The Model

ECONOMY

- Population of agents indexed by x \# efficiency units $x^{\sim} F(x)$
- Production

$$
q=x Q(h)
$$

- x : manager's skill
- h : \# of efficiency units of labor hired
- w: wage per efficiency unit
- Q concave
- Characteristics of the Technology:
- Complementarity in skill of worker and manager: marginal product of worker increases in manager skill
- Production is asymmetric: contribution of identically skilled agent depends on occupation
- Managers: imperfect substitutes; Workers' efficiency units: perf substitutes (no mass point in wages as in Lucas (78))
- Span of control depends on efficiency, not on \# bodies

The Model

Economy

Market Equilibrium:

1. The firm's decision problem

$$
\begin{aligned}
\pi(x, w) & =\max _{h}\{x Q(h)-w h\} \\
\Rightarrow F O C & : \quad x Q^{\prime}(h)=w
\end{aligned}
$$

2. Occupational Choice. The set of Managers:

$$
E(w)=\left\{x \in \mathbb{R}_{+} \mid \pi(x, w)>w x\right\}
$$

3. Market clearing

The Model

Autarky: All agents are identical in economy

- Let n be the fraction workers ($1-n$ managers)
- An Equilibrium $\{w(x), n(x)\}$ solving the FOC:

$$
x Q^{\prime}\left(\frac{x n}{1-n}\right)=w
$$

- Occupational choice/market clearing

$$
\begin{aligned}
\pi(x, w) & =w x \\
x Q\left(\frac{x n}{1-n}\right)-w \frac{x n}{1-n} & =w x
\end{aligned}
$$

- An Example: $Q(h)=h^{\alpha}$

$$
n(x)=\alpha \quad w(x)=(1-\alpha)^{(1-\alpha)} \alpha^{\alpha} x^{\alpha}
$$

The Model

Worldwide Labor Market

- Let $h=g(x, w)$ be the demand function from FOC
- Occupational choice:

$$
E(w)=\left\{x \in \mathbb{R}_{+} \mid \pi(x, w)>w x\right\}
$$

- Market Clearing

$$
\int_{E(w)} g(x, w) d F(x)=\int_{\mathbb{R}_{+}-E(w)} x d F(x)
$$

Results

Example

- Let $Q(h)=h^{\frac{1}{2}}, F(x)=x$
- Autarky income $w(x) x=\frac{1}{2} x^{\frac{3}{2}}$
- Free trade incomes:

$$
y(x)=\max \left(w^{F} x, \pi^{F}(x)\right)=\max \left(0.42 x, 0.59 x^{2}\right)
$$

Results

Example

Gains in earnings relative to autarky

Level

Ratio

Results

General: No gains for middle

Proposition 1. If (i) $F(\cdot)$ is atomless and continuous, and if (ii)
$Q^{\prime}(h)$ decreases continuously from $+\infty$ when $h=0$ to 0 when $h=\infty$, an equilibrium with Factor Mobility exists at z, satisfying

$$
x_{\min }<z<x_{\max }
$$

and, moreover,

$$
\pi\left(z, w^{A}[z]\right)=w^{A}(z) z=w^{F} z=\pi^{F}(z) .
$$

Proof: Lemma 1 and 2.

Results

General

Lemma 1. If $\left(z^{F}, w^{F}\right)$ is a free-market equilibrium, then w^{F} is the autarky wage in a country for which $x=z^{F}$.

- $\left(z^{F}, w^{F}\right)$ is equilibrium $\Rightarrow \pi\left(z^{F}, w^{F}\right)=w^{F} z^{F}$
- In autarky in country $x=z^{F}$, occupational choice is met
- market-clearing condition and the FOC: there is n such that

$$
z^{F} Q^{\prime}\left(\frac{n z^{F}}{1-n}\right)=w^{F} \Longleftrightarrow Q^{\prime}\left(\frac{n z^{F}}{1-n}\right)=\frac{w^{F}}{z^{F}},
$$

by (ii), there is a unique $n \in(0,1)$

- supply $n z^{F}$, equals demand:

$$
n z^{F}=(1-n)\left(\frac{n z^{F}}{1-n}\right) .
$$

- Conditions autarky equilibrium are met at $\left(z^{F}, w^{F}\right)$ QED.

Results

Lemma 2. z^{F} satisfies $x_{\text {min }}<z<x_{\text {max }}$.

- Premise: no mass points in F
- Suppose $z^{F}=x_{\max }$: then demand for h would be zero and there would be excess supply of workers
- Conversely, if $z^{F}=x_{\text {min }}$ there would be an excess supply of workers. QED.

Results

General: Distribution

Proposition 2. (First order stochastic dominance) The distribution of earnings under Factor Mobility (weakly) stochastically dominates the distribution under Autarky.

Disentangling Occupational Sorting

Sorting versus Standard Gains-from-trade

- Experiment: global labor market, no occupational switching
- Global labor market \Rightarrow single market-clearing wage w
- No occupational switching: $n(x)$ type- x agents are "forced" to be workers, where $n(x)$ is determined under autarky
- Market clearing wage solves:

$$
\int_{0}^{\infty} g(x, w)[1-n(x)] d F(x)=\int_{0}^{\infty} x n(x) d F(x)
$$

instead of

$$
\int_{E(w)} g(x, w) d F(x)=\int_{\mathbb{R}_{+}-E(w)} x d F(x)
$$

- Occupation dependent earnings: income for identical types is not equalized (low $x: w x>\pi(x)$; high $x: w x<\pi(x)$)

Disentangling Occupational Sorting

The Cobb-Douglas example

- Autarky: $n(x)=\alpha$
- Income

$$
\begin{aligned}
y(x)= & n(x) \tilde{w} x+(1-n(x)) \tilde{\pi}(x) \\
& \text { instead of } \\
y(x)= & \max \{w x, \pi(x)\}
\end{aligned}
$$

Results

Predictions of the Model

- Gains from openness: in the tails
- Middle: small or no gains
- U-shaped pattern of growth
- Mechanism:
- one world labor market \Rightarrow one wage
- wages increase for low skill types
- wages decrease for high skill types \Rightarrow most productive managers gain most, given complementarity
- factor prices for middle types: similar under autarky
- Occupational sorting is important

Predictions of the model and Openness

OpENNESS

Predictions of the model and Openness

Growth 1970-2000

Predictions of the model and Openness

Growth 1910-1929

Predictions of the model and Openness

Growth 1910-1929

Results

Partially-Free Trade: No Pareto dominance

Proposition 3. (Free vs. Partially-free trade). Suppose F is atomless on the interval $\left[x_{\min }, x_{\max }\right]$. Then there is a partially-free trade allocation that is not weakly Pareto dominated by free trade.

Results

General: Planner's solution

- Planner: choose allocation to maximize output Y s.t. market clearing

$$
\max _{z, h} \int_{z}^{\infty} x Q(h(x)) d F(x)+\lambda\left[\int_{\infty}^{z} x d F(x)-\int_{z}^{\infty} h(x) d F(x)\right]
$$

- FOC:

$$
\begin{array}{rl}
h & : \\
z & x Q^{\prime}(h)=\lambda \\
z & z Q(h)-\lambda h=\lambda z
\end{array}
$$

- Proposition 4. The decentralized equilibrium outcome implements the planner's solution.

Results

- Consider two economies $F_{1}(x), F_{2}(x)$ with world pop. shares α_{1}, α_{2}; integrated economy $F(x)=\alpha_{1} F_{1}+\alpha_{2} F_{2}$
- Proposition 5. $w_{1} \neq w_{2} \Leftrightarrow Y(F)>\alpha_{1} Y\left(F_{1}\right)+\alpha_{2} Y\left(F_{2}\right)$
- From FOC: $g\left(w_{1}, x\right) \neq g\left(w_{2}, x\right)$
- By concavity of Q : convex combination of g_{1}, g_{2} increases world output
- Counterpart: $Y(F)=\alpha_{1} Y\left(F_{1}\right)+\alpha_{2} Y\left(F_{2}\right)$ even if $F_{1} \neq F_{2}$, provided $w_{1}=w_{2}$
- F maximizes output, but does not Pareto dominate F_{1}, F_{2}

Related Literature

Model builds on Lucas (1978): "On the Size Distribution of Business Firms"

Lucas

Technology: \# workers
Mass point income distribution

Variance wages $=0$

Ours

Technology: \# efficiency units

Non-degenerate income distr.
Variance $w^{2} \sigma^{2}(x \mid x<z)$

Related Literature

McGrattan-Prescott (2007)

- Our theory: hire labor across borders
- MP: worldwide application of ideas (technology capital)
- Production function (let N be number of locations):

$$
\underbrace{Y=x Q\left(\sum_{i=1}^{N} h_{i}\right)}_{\text {(1) ours }}
$$

(2) MP

- MP: Limits to firm size are at plant level, not at firm level
- Our production function: Autarky, all N plants in the country of manager; Free Trade: plants can be anywhere
- MP: firm can operate unlimited \# plants \Rightarrow large estimates of the gains to openness (no span of control limits globally)
- Data fits better (1): constant returns at plant level, diminishing returns at firm level (AC curve: flat, wide bottom): Olley and Pakes (1996), Syverson (2004)...
- Firm's location (MP): x^{\prime} should be in all locations $x<x^{\prime}$ is in

Related Literature

Gabaix-Landier (2008)

- Managerial earnings as competitive matching market of firms/capital and managers
- Rise in managerial earnings due to increase in efficiency and value of (largest) firms
- Our theory: explanation (globalization) for why the distribution of value has changed
- Ours: manager collects all profits, but similar implications if manager collects given fraction leaving the rest to shareholders

Within Country Heterogeneity

1. Multidimensional Skills

- Agent type: $\{x, y\}, x$ manager skill, y worker skill
- Independently distributed $F(x, y)$, conditionals $F(x), G(y)$ (before $x=y$)
- FOC is as before $x Q^{\prime}(h)=w$
- Set of managers $E(w)=\left\{x, y \in \mathbb{R}_{+}^{2} \mid \pi(x, w)>w y\right\}$
- Market-clearing condition

$$
\int_{E(w)} g(y, w) d F(x, y)=\int_{\mathbb{R}_{+}^{2}-E(w)} x d F(x, y)
$$

- Type \bar{y} is indifferent: $\pi(x, w)=w \bar{y}$
- Autarky: \bar{y} solves (independent of x, separability $x Q(h)$)

$$
\int_{0}^{\bar{y}} g(\bar{y}, w) d G(y)=\int_{\bar{y}}^{\infty} y d G(y)
$$

Within Country Heterogeneity

1. Multidimensional Skills

- Free trade, market clearing solves

$$
\int_{0}^{\infty} \int_{0}^{\bar{y}(x)} g(\bar{y}, w) d G(y) d F(x)=\int_{0}^{\infty} \int_{\bar{y}(x)}^{\infty} y d G(y) d F(x)
$$

- Proposition. Under free trade, $\bar{y}(x)$ strictly increasing in x.
- Cobb-Douglas example ($\alpha=\frac{1}{2}$)

Within Country Heterogeneity

2. Increasing "reach" of labor: an lognormal example

- Let a country have skill distribution $F(x)$: allows for closed form solution using moment-generating function
- (Marginal) effect of increased openness: access to skill distribution $F^{\prime}(x)$, mean-preserving spread of $F(x)$
- Examples: w increases, $\pi(x)$ decreases \Rightarrow no First-order stochastic dominance

A Market for Management

1. Autarky

- Proposition. Zero-profit firms replicate market equilibrium
- Hire N agents: fraction n workers, $1-n$ managers; Let p be the wage per worker. The firm problem

$$
\max _{n, N}\left\{\left[(1-n) x Q\left(\frac{n x}{1-n}\right)-p\right] N\right\}
$$

- Zero profits $\Rightarrow Q=\frac{p}{(1-n) x}$ (N drops out)
- Remains: show occupational choice $x Q-w \frac{n x}{1-n}=w x$
- From the firm's problem:

$$
\max _{n}\left\{\left[(1-n) Q\left(\frac{n x}{1-n}\right)-w\right]\right\}
$$

- The FOC: $0=Q-\frac{x}{1-n} Q^{\prime}\left(\frac{1-n}{n} x\right)$
- Subst. Q, mult. by $n: x Q^{\prime}(h)=w$ occupational choice

A Market for Management

2. Trade of Factors

- Skill-dependent price $p(x)$; hire $n(x)$ agents: $n_{m}(x)$ managers, $n(x)-n_{m}(x)$ workers
- The firm problem
$V=\max _{n(\cdot), n_{m}(.), h(.)}\left\{\int x Q(h[x]) n_{m}(x) d x-\int p(x) n(x) d x\right\}$
subject to:

$$
\underbrace{\int h(x) n_{m}(x) d x}_{\text {\# efficiency units }} \leq \underbrace{\int x\left[n(x)-n_{m}(x)\right] d x}_{\text {\# non-managerial workers }}
$$

and $0 \leq n_{m}(x) \leq n(x)$, and zero profits $V=0$

- Solving this constrained program gives

$$
p(x)= \begin{cases}w^{F} x & \text { for } x<z^{F} \\ \pi\left(x, w^{F}\right) & \text { for } x \geq z^{F}\end{cases}
$$

Conclusion

- Theory of labor mobility as a result of openness
- Gains from openness are U-shaped
- Occupational sorting: in response to new equilibrium wages, occupational choice changes. More managers in high skill economy
- Can disentangle sorting from standard trade effect
- Openness and integration increase aggregate output
- But: openness is not Pareto improving in general

