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City as a team
Sorting across Space

• From team to city:
• Agg. technology w/ specific complementarities

• Additional economic forces: housing prices

• Objective: derive compl. from location choice
⇒ Spatial Sorting
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The model

• J locations (cities) j ∈ J = {1, ..., J}

• Fixed amount of land (housing) Hj



Citizens

• Citizens (workers) with heterogenous skills xi

• Preferences over consumption and housing (price p):

u(c, h) = c1−αhα

• Worker mobility ⇒ utility equalization across cities:

u(cij , hij) = u(cij ′ , hij ′), ∀j ′ 6= j



Technology

• Cities differ exogenously in TFP Aj

• Representative firm in city j produces

AjF (m1j , ...,mIj)

mij : employment level of skill i ; given wages wij

• Nested CES ∼ Krusell-Violante-Ohanian-Rios (2000)



Technology: Nested CES
3 skill types ⇒ 5 configurations

0. Benchmark CES:

AjF = Aj

(
mγ

1jy1 + mγ
2jy2 + mγ

3jy3

)β
γ ∈ [0, 1], β > 0

1. Extreme-Skill Complementarity

AjF = Aj

[
mγ

2jy2 + (m1j
γy1 + m3j

γy3)λ
]β

A. λ > 1: skills 1 and 3 are (relative) complements;
B. λ < 1: skills 1 and 3 are (relative) substitutes;
C. λ = 1: CES

2. Top-Skill Complementarity

AjF = Aj

[
mγ

1jy1 + (m2j
γy2 + m3j

γy3)λ
]β

A. λ > 1: skills 2 and 3 are (relative) complements;
B. λ < 1: skills 2 and 3 are (relative) substitutes;
C. λ = 1: CES

3. Bottom-Skill Complementarity: see 2.
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Market clearing

• Housing market:
∑I

i=1 hijmij = Hj

• Labour market:
∑J

j=1 mij = Mi (Mi : total # of skill i)

• City population: Sj =
∑I

i=1 mij

• Two types of cities, C1,C2 of each type



Citizen’s problem

• Optimal consumption

c?ij = (1− α)wij and h?ij = α
wij

pj

• Indirect utility function

Ui = αα (1− α)1−α wij

pαj

⇒ From mobility, utility equalization:

wi1

pα1
=

wi2

pα2



Extreme-Skill Complementarity
Equilibrium conditions (β = 1)

λAj

[
mγ

1jy1 + mγ
3jy3

]λ−1
γmγ−1

1j y1 − w1j = 0

γAjm
γ−1
2j y2 − w2j = 0

λAj

[
mγ

1jy1 + mγ
3jy3

]λ−1
γmγ−1

3j y3 − w3j = 0



Extreme-Skill Complementarity
Equilibrium Demand (β = 1)

• Equilibrium demand for middle skills m21:

m21 =

[(
p1
p2

)α
A2
A1

] 1
γ−1 M2

C2

1 + C1
C2

[(
p1
p2

)α
A2
A1

] 1
γ−1

• and extreme skills

m11 =

[(
p1
p2

)α
A2
A1

] 1
λγ−1 M1

C2

1 + C1
C2

[(
p1
p2

)α
A2
A1

] 1
λγ−1

likewise for m31
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Main Results

Theorem 1. City Size and TFP

The more productive city is larger, S1 > S2

Theorem 2. Extreme-Skill Complementarity and Fat Tails

The skill distribution in the larger city has fatter tails

→ Mechanism: skill complementarity also in small cities, but demand

for extreme skills is higher in big cities due to TFP (Aj)
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Main Results

Corollary 1. CES technology

If λ = 1, then the skill distribution across cities is identical

Corollary 2. Extreme-Skill Substitutability and Thin Tails

The skill distribution in the larger city has thinner tails

Theorem 3. Top-Skill Complementarity and FOSD

The skill distribution in the larger city first-order stoch. dominates
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Main Results
5 technologies → 5 distributions

1. Extreme-Skill Complementarity ⇒ fat tails

2. Extreme-Skill Substitutability ⇒ thin tails

3. Top-Skill Complementarity ⇒ FOSD of big city

4. Top-Skill Substitutability ⇒ FOSD of small city

5. Constant Elasticity (CES) ⇒ identical distributions



Empirical evidence

• Use theory to obtain a measure for skills

Ui = αα (1− α)1−α wij

pαj

• Need to observe:

- wage distribution wij by city

- housing price level pj

- budget share of housing α
α̂ = 0.24 from Davis and Ortalo-Magné (RED 2010)
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Wages
CPS 2009
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population < 1m > 2.5m
10th percentile: pop < 1m = 5.93, pop > 2.5m = 5.99, diff = 0.065*** (0.007)
90th percentile: pop < 1m = 7.36, pop > 2.5m = 7.56, diff = 0.198*** (0.007)
Kurtosis (H0: =3): pop < 1m = 2.66***, pop > 2.5m = 2.37***
Wage data: cps 2009, obs pop < 1m = 25726, obs pop > 2.5m = 34999
Dep. var.: lwage = = log(wage)
 1 Nov 2012, 22:20:09



Wages and city size
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Housing prices

• American Community Survey (ACS) 2009

• Rental prices (robust: sales)

⇒ Hedonic price schedule: to obtain housing price index



Skills and city size
Skill measure: wi

pαi
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skill (log utility)

population < 1m > 2.5m
10th percentile: pop < 1m = 5.44, pop > 2.5m = 5.36, diff = -0.074*** (0.006)
90th percentile: pop < 1m = 6.86, pop > 2.5m = 6.99, diff = 0.132*** (0.009)
Kurtosis (H0: =3): pop < 1m = 2.66***, pop > 2.5m = 2.38***
Wage data: cps 2009, obs pop < 1m = 25584, obs pop > 2.5m = 34999
Dep. var.: lutility20 = Skill: cbsa rentindex (ACS 2009)
 3 Jan 2013, 20:58:00



Skills and city size
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Skills and city size

1. Constant mean:

housing cost increases 4 × faster than wages
⇒ 1.1690.24 = 1.038 ≈ 1.042

2. Variance increases in city size

∴ Skill distribution has fat tails

→ extreme-skill complementarity

AjF = Aj

[
mγ

2jy2 + (m1j
γy1 + m3j

γy3)λ
]β
, λ > 1

→ Interpretation: high skilled workers need low-skilled services
for production
• administrative/sales help
• household help and child care
• food services, restaurants,...
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Robustness: Observables



Education: A Direct Measure of Skill
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residual skill, controlled for education

population < 1m > 2.5m
10th percentile: pop < 1m = -0.61, pop > 2.5m = -0.65, diff = -0.046*** (0.007)
90th percentile: pop < 1m = 0.64, pop > 2.5m = 0.67, diff = 0.032*** (0.008)
Kurtosis (H0: =3): pop < 1m = 2.99, pop > 2.5m = 2.92***
Wage data: cps 2009, obs pop < 1m = 25584, obs pop > 2.5m = 34999
Dep. var.: lresid2utility20grade92 = Residual Skill(utility20), not predicted by grade92
 6 Jan 2013, 23:12:42
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residual skill, controlled for occupation

population < 1m > 2.5m
10th percentile: pop < 1m = -0.55, pop > 2.5m = -0.59, diff = -0.042*** (0.006)
90th percentile: pop < 1m = 0.56, pop > 2.5m = 0.60, diff = 0.040*** (0.007)
Kurtosis (H0: =3): pop < 1m = 3.48***, pop > 2.5m = 3.32***
Wage data: cps 2009, obs pop < 1m = 25584, obs pop > 2.5m = 34999
Dep. var.: lresid2utility20occ00 = Residual Skill(utility20), not predicted by occ00
 7 Jan 2013, 11:46:13



Industrial Composition
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residual skill, controlled for industry

population < 1m > 2.5m
10th percentile: pop < 1m = -0.63, pop > 2.5m = -0.69, diff = -0.053*** (0.006)
90th percentile: pop < 1m = 0.66, pop > 2.5m = 0.74, diff = 0.074*** (0.008)
Kurtosis (H0: =3): pop < 1m = 3.00, pop > 2.5m = 2.71***
Wage data: cps 2009, obs pop < 1m = 25584, obs pop > 2.5m = 34999
Dep. var.: lresid2utility20ind02 = Residual Skill(utility20), not predicted by ind02
 7 Jan 2013, 11:46:39



Migration

Foreign Born Natives
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population < 1m > 2.5m
10th percentile: pop < 1m = 5.23, pop > 2.5m = 5.14, diff = -0.085*** (0.017)
90th percentile: pop < 1m = 6.61, pop > 2.5m = 6.70, diff = 0.083** (0.046)
Kurtosis (H0: =3): pop < 1m = 3.11, pop > 2.5m = 2.85**
Wage data: cps 2009, obs pop < 1m = 1371, obs pop > 2.5m = 4402
Dep. var.: lutility20 = Skill: cbsa rentindex (ACS 2009)
 3 Jan 2013, 20:59:33
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population < 1m > 2.5m
10th percentile: pop < 1m = 5.47, pop > 2.5m = 5.45, diff = -0.014** (0.007)
90th percentile: pop < 1m = 6.87, pop > 2.5m = 7.02, diff = 0.151*** (0.010)
Kurtosis (H0: =3): pop < 1m = 2.68***, pop > 2.5m = 2.44***
Wage data: cps 2009, obs pop < 1m = 24213, obs pop > 2.5m = 30597
Dep. var.: lutility20 = Skill: cbsa rentindex (ACS 2009)
 3 Jan 2013, 20:59:56



Age

20-29 year old 30-39 year old
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population < 1m > 2.5m
10th percentile: pop < 1m = 5.32, pop > 2.5m = 5.27, diff = -0.051*** (0.012)
90th percentile: pop < 1m = 6.48, pop > 2.5m = 6.57, diff = 0.090*** (0.018)
Kurtosis (H0: =3): pop < 1m = 3.29***, pop > 2.5m = 2.87**
Wage data: cps 2009, obs pop < 1m = 4806, obs pop > 2.5m = 6591
Dep. var.: lutility20 = Skill: cbsa rentindex (ACS 2009)
 3 Jan 2013, 21:00:13
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population < 1m > 2.5m
10th percentile: pop < 1m = 5.48, pop > 2.5m = 5.38, diff = -0.092*** (0.014)
90th percentile: pop < 1m = 6.84, pop > 2.5m = 6.97, diff = 0.131*** (0.019)
Kurtosis (H0: =3): pop < 1m = 2.72***, pop > 2.5m = 2.43***
Wage data: cps 2009, obs pop < 1m = 5902, obs pop > 2.5m = 8667
Dep. var.: lutility20 = Skill: cbsa rentindex (ACS 2009)
 3 Jan 2013, 21:00:34
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population < 1m > 2.5m
10th percentile: pop < 1m = 5.51, pop > 2.5m = 5.45, diff = -0.057*** (0.014)
90th percentile: pop < 1m = 6.95, pop > 2.5m = 7.11, diff = 0.158*** (0.018)
Kurtosis (H0: =3): pop < 1m = 2.59***, pop > 2.5m = 2.29***
Wage data: cps 2009, obs pop < 1m = 6709, obs pop > 2.5m = 9231
Dep. var.: lutility20 = Skill: cbsa rentindex (ACS 2009)
 3 Jan 2013, 21:00:47
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population < 1m > 2.5m
10th percentile: pop < 1m = 5.53, pop > 2.5m = 5.45, diff = -0.073*** (0.015)
90th percentile: pop < 1m = 6.99, pop > 2.5m = 7.09, diff = 0.101*** (0.019)
Kurtosis (H0: =3): pop < 1m = 2.55***, pop > 2.5m = 2.36***
Wage data: cps 2009, obs pop < 1m = 5895, obs pop > 2.5m = 7487
Dep. var.: lutility20 = Skill: cbsa rentindex (ACS 2009)
 3 Jan 2013, 21:01:05



Decomposing the skill distributions
Small vs. big cities

10% Quantile 90% Quantile
Observed Quantiles:
- Large cities 5.365 (0.004) *** 6.994 (0.006) ***
- Small cities 5.439 (0.005) *** 6.862 (0.007) ***
- Difference -0.074 (0.006) *** 0.132 (0.009) ***
Firpo, Fortin, Lemieux (2009)
Predicted Quantiles:
- Large cities 5.387 (0.005) *** 7.022 (0.005) ***
- Small cities 5.454 (0.004) *** 6.878 (0.008) ***
- Difference -0.068 (0.007) *** 0.144 (0.009) ***
Explained by observables:
- Education (16 categories) 0.003 (0.002) ** 0.052 (0.002) ***
- Occupation (22 categories) 0.004 (0.002) * 0.025 (0.003) ***
- Industry (51 categories) -0.001 (0.002) 0.013 (0.002) ***
- Race (4 groups) -0.004 (0.001) *** -0.015 (0.001) ***
- Sex -0.001 (0.001) * -0.002 (0.001) *
- Foreign born -0.020 (0.002) *** -0.004 (0.001) ***
- Age (2nd order polynomial) 0.000 (0.001) -0.002 (0.001) *
Total explained by observables -0.018 (0.004) *** 0.067 (0.005) ***
Not explained by observables -0.049 (0.006) *** 0.077 (0.008) ***
Chernozhukov, Fernández-Val, Melly (2012)
Predicted Quantile difference -0.068 (0.006) 0.113 (0.009)
Explained by observables -0.019 (0.004) 0.064 (0.005)
Not explained by observables -0.050 (0.007) 0.049 (0.007)



Variation in all consumption prices
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• Prices for grocery items (sausage), housing (rent), utilities (phone call),
transportation (gasoline), health care (Lipitor) and services (haircut).

• Does not correct (enough) for quality differences

→ Likely to overstate price differentials

⇒ We see above figure as upper bound
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Discussion

• Sorting within Cities

• Non-linear Engel Curves

• Quantifying Production Technology



Sorting within Cities
What is the relevant housing price?
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Sorting within Cities
What is the relevant housing price?
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Sorting within Cities
Utility based on highest price in CBSA
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Sorting within Cities
Utility based on price of neighbourhood (PUMA)
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• Lower bound of relevant price
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Sorting within Cities
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Sorting within Cities
Detroit
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Non-linear Engel Curves

• Stone-Geary utility function

u(c , h) = c1−α(h − h)α ⇒ ph?

w
= α + (1− α)h?

p

w

• Using CEX, estimate ĥ = β̂/(1− α̂) from

si = α + β
pj
wi

+ εi
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α̂ = 0.224 (s.e.= 0.005), ĥ = 27.7 (3.8)



Quantifiying Production Technology

λ =
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Quantifiying Production Technology

Observed model outcomes:

city j w1j w2j w3j m1j m2j m3j Cj

1 416 844 1923 730,509 1,953,303 730,509 21

2 354 717 1634 30,900 105,516 30,900 204

Implied production technology for different values of γ:

γ λ A1 A2 y1 y2 y3

0.655 1.0407 190,228 59,107 0.2329 1 1.0762

0.8 1.0193 19,118 9,065 0.3189 1 1.4733

0.9 1.0086 3,992 2,534 0.3964 1 1.8317



Open Question
City-specific Optimal Taxation

• Progressive tax: affects worker of same skill more in big city

• Average tax rate: 3% points difference at median:

Population Wage level Avg. Tax Rate

New York 19 million 1.20 16%
Janesville, WI 160,000 1.00 13%

• Due to mobility: no redistribution! Same skills, same utility

• Policy: city-specific progressive tax: adjust for city-level wages
• Net wages in large cities ↑
• Move from small cities to large cities: average city size ↑
• GDP and Utility ↑ everywhere
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