SPATIAL SORTING

Jan Eeckhout (University College London and GSE-UPF)
Roberto Pinheiro (Colorado)
Kurt Schmidheiny (Basel)

University of Mannheim April 16, 2013

complementarities

complementarities

complementarities

(knowledge) spillovers complementarities

(knowledge) spillovers complementarities

substitutes

(knowledge) spillovers complementarities substitutes

large groups

large groups

firms, teams, class rooms

large groups

(knowledge) spillovers

complementarities

firms, teams, class rooms peer effects large groups

(knowledge) spillovers

complementarities

firms, teams, class rooms peer effects SORTING

supermodularity (knowledge) spillovers complementarities

firms, teams, class rooms peer effects SORTING Who is on which team? supermodularity (knowledge) spillovers

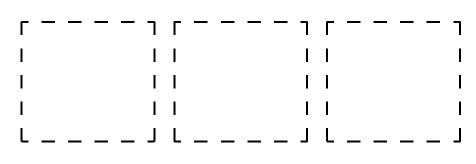
complementarities

SORTING

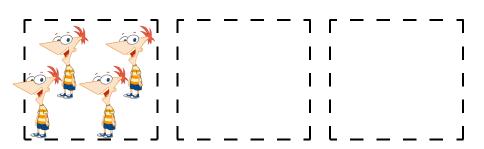
Who is in which team?

Sorting

WHO IS IN WHICH TEAM?

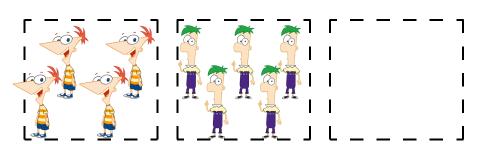


SORTING WHO IS IN WHICH TEAM?



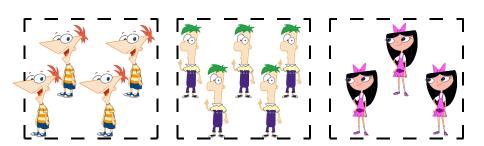
SORTING

WHO IS IN WHICH TEAM?



Sorting

Who is in which team?



Sorting

Who is in which team?

CITY AS A TEAM

SORTING ACROSS SPACE

CITY AS A TEAM

SORTING ACROSS SPACE

CITY AS A TEAM

SORTING ACROSS SPACE

THE MODEL

- J locations (cities) $j \in \mathcal{J} = \{1, ..., J\}$
- Fixed amount of land (housing) H_j

CITIZENS

- Citizens (workers) with heterogenous skills x_i
- Preferences over consumption and housing (price p):

$$u(c,h)=c^{1-\alpha}h^{\alpha}$$

Worker mobility ⇒ utility equalization across cities:

$$u(c_{ij},h_{ij})=u(c_{ij'},h_{ij'}), \quad \forall j'\neq j$$

TECHNOLOGY

- Cities differ exogenously in TFP A_j
- Representative firm in city *j* produces

$$A_jF(m_{1j},...,m_{lj})$$

m_{ij}: employment level of skill i; given wages w_{ij}

Nested CES ∼ Krusell-Violante-Ohanian-Rios (2000)

3 skill types \Rightarrow 5 configurations

0. Benchmark CES:

$$A_{j}F = A_{j} \left(m_{1j}^{\gamma} y_{1} + m_{2j}^{\gamma} y_{2} + m_{3j}^{\gamma} y_{3} \right)^{\beta} \ \gamma \in [0, 1], \beta > 0$$

3 skill types \Rightarrow 5 configurations

0. Benchmark CES:

$$A_{j}F = A_{j} \left(m_{1j}^{\gamma} y_{1} + m_{2j}^{\gamma} y_{2} + m_{3j}^{\gamma} y_{3} \right)^{\beta} \ \gamma \in [0, 1], \beta > 0$$

1. Extreme-Skill Complementarity

$$A_{j}F = A_{j} \left[m_{2j}^{\gamma} y_{2} + (m_{1j}^{\gamma} y_{1} + m_{3j}^{\gamma} y_{3})^{\lambda} \right]^{\beta}$$

- A. $\lambda > 1$: skills 1 and 3 are (relative) complements;
- B. $\lambda < 1$: skills 1 and 3 are (relative) substitutes;
- C. $\lambda = 1$: CES

3 skill types \Rightarrow 5 configurations

0. Benchmark CES:

$$A_{j}F = A_{j} \left(m_{1j}^{\gamma} y_{1} + m_{2j}^{\gamma} y_{2} + m_{3j}^{\gamma} y_{3} \right)^{\beta} \ \gamma \in [0, 1], \beta > 0$$

1. Extreme-Skill Complementarity

$$A_{j}F = A_{j} \left[m_{2j}^{\gamma} y_{2} + (m_{1j}^{\gamma} y_{1} + m_{3j}^{\gamma} y_{3})^{\lambda} \right]^{\beta}$$

- A. $\lambda > 1$: skills 1 and 3 are (relative) complements;
- B. $\lambda < 1$: skills 1 and 3 are (relative) substitutes;
- C. $\lambda = 1$: CES
- 2. Top-Skill Complementarity

$$A_{j}F = A_{j} \left[m_{1j}^{\gamma} y_{1} + (m_{2j}^{\gamma} y_{2} + m_{3j}^{\gamma} y_{3})^{\lambda} \right]^{\beta}$$

- A. $\lambda > 1$: skills 2 and 3 are (relative) complements;
- B. $\lambda < 1$: skills 2 and 3 are (relative) substitutes;
- C. $\lambda = 1$: CES

3 skill types \Rightarrow 5 configurations

0. Benchmark CES:

$$A_{j}F = A_{j} \left(m_{1j}^{\gamma} y_{1} + m_{2j}^{\gamma} y_{2} + m_{3j}^{\gamma} y_{3} \right)^{\beta} \ \gamma \in [0, 1], \beta > 0$$

1. Extreme-Skill Complementarity

$$A_{j}F = A_{j} \left[m_{2j}^{\gamma} y_{2} + (m_{1j}^{\gamma} y_{1} + m_{3j}^{\gamma} y_{3})^{\lambda} \right]^{\beta}$$

- A. $\lambda > 1$: skills 1 and 3 are (relative) complements;
- B. $\lambda < 1$: skills 1 and 3 are (relative) substitutes;
- C. $\lambda = 1$: CES
- 2. Top-Skill Complementarity

$$A_{j}F = A_{j} \left[m_{1j}^{\gamma} y_{1} + (m_{2j}^{\gamma} y_{2} + m_{3j}^{\gamma} y_{3})^{\lambda} \right]^{\beta}$$

- A. $\lambda > 1$: skills 2 and 3 are (relative) complements;
- B. $\lambda < 1$: skills 2 and 3 are (relative) substitutes;
- C. $\lambda = 1$: CES
- 3. Bottom-Skill Complementarity: see 2.

Market Clearing

- Housing market: $\sum_{i=1}^{I} h_{ij} m_{ij} = H_j$
- Labour market: $\sum_{i=1}^{J} m_{ij} = M_i$ (M_i : total # of skill i)
- City population: $S_j = \sum_{i=1}^{I} m_{ij}$
- Two types of cities, C_1 , C_2 of each type

CITIZEN'S PROBLEM

• Optimal consumption

$$c_{ij}^{\star} = (1 - \alpha)w_{ij}$$
 and $h_{ij}^{\star} = \alpha \frac{w_{ij}}{p_i}$

Indirect utility function

$$U_i = \alpha^{\alpha} \left(1 - \alpha\right)^{1 - \alpha} \frac{w_{ij}}{p_j^{\alpha}}$$

⇒ From mobility, utility equalization:

$$\frac{w_{i1}}{p_1^{\alpha}} = \frac{w_{i2}}{p_2^{\alpha}}$$

Extreme-Skill Complementarity

Equilibrium conditions $(\beta = 1)$

$$\lambda A_{j} \left[m_{1j}^{\gamma} y_{1} + m_{3j}^{\gamma} y_{3} \right]^{\lambda - 1} \gamma m_{1j}^{\gamma - 1} y_{1} - w_{1j} = 0$$

$$\gamma A_{j} m_{2j}^{\gamma - 1} y_{2} - w_{2j} = 0$$

$$\lambda A_{j} \left[m_{1j}^{\gamma} y_{1} + m_{3j}^{\gamma} y_{3} \right]^{\lambda - 1} \gamma m_{3j}^{\gamma - 1} y_{3} - w_{3j} = 0$$

Extreme-Skill Complementarity

Equilibrium Demand $(\beta = 1)$

• Equilibrium demand for middle skills m_{21} :

$$m_{21} = \frac{\left[\left(\frac{p_1}{p_2}\right)^{\alpha} \frac{A_2}{A_1}\right]^{\frac{1}{\gamma-1}} \frac{M_2}{C_2}}{1 + \frac{C_1}{C_2} \left[\left(\frac{p_1}{p_2}\right)^{\alpha} \frac{A_2}{A_1}\right]^{\frac{1}{\gamma-1}}}$$

Extreme-Skill Complementarity

Equilibrium Demand $(\beta = 1)$

Equilibrium demand for middle skills m₂₁:

$$m_{21} = \frac{\left[\left(\frac{p_1}{p_2}\right)^{\alpha} \frac{A_2}{A_1}\right]^{\frac{1}{\gamma-1}} \frac{M_2}{C_2}}{1 + \frac{C_1}{C_2} \left[\left(\frac{p_1}{p_2}\right)^{\alpha} \frac{A_2}{A_1}\right]^{\frac{1}{\gamma-1}}}$$

and extreme skills

$$m_{11} = \frac{\left[\left(\frac{p_1}{p_2}\right)^{\alpha} \frac{A_2}{A_1}\right]^{\frac{1}{\lambda\gamma-1}} \frac{M_1}{C_2}}{1 + \frac{C_1}{C_2} \left[\left(\frac{p_1}{p_2}\right)^{\alpha} \frac{A_2}{A_1}\right]^{\frac{1}{\lambda\gamma-1}}}$$

likewise for m_{31}

Theorem 1. City Size and TFP

The more productive city is larger, $S_1 > S_2$

Theorem 1. City Size and TFP

The more productive city is larger, $S_1 > S_2$

Theorem 2. Extreme-Skill Complementarity and Fat Tails

The skill distribution in the larger city has fatter tails

Theorem 1. City Size and TFP

The more productive city is larger, $S_1 > S_2$

Theorem 2. Extreme-Skill Complementarity and Fat Tails

The skill distribution in the larger city has fatter tails

 \rightarrow Mechanism: skill complementarity also in small cities, but demand for extreme skills is higher in big cities due to TFP (A_i)

Corollary 1. CES technology

If $\lambda=1$, then the skill distribution across cities is identical

Corollary 1. CES technology

If $\lambda = 1$, then the skill distribution across cities is identical

Corollary 2. Extreme-Skill Substitutability and Thin Tails The skill distribution in the larger city has thinner tails

Corollary 1. CES technology

If $\lambda = 1$, then the skill distribution across cities is identical

Corollary 2. Extreme-Skill Substitutability and Thin Tails

The skill distribution in the larger city has thinner tails

Theorem 3. Top-Skill Complementarity and FOSD

The skill distribution in the larger city first-order stoch. dominates

5 Technologies \rightarrow 5 distributions

- 1. Extreme-Skill Complementarity \Rightarrow fat tails
- 2. Extreme-Skill Substitutability \Rightarrow thin tails
- 3. Top-Skill Complementarity \Rightarrow FOSD of big city
- 4. Top-Skill Substitutability ⇒ FOSD of small city
- 5. Constant Elasticity (CES) \Rightarrow identical distributions

EMPIRICAL EVIDENCE

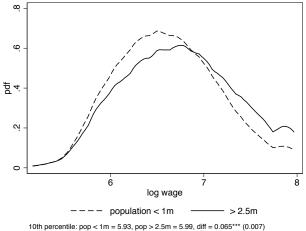
Empirical evidence

• Use theory to obtain a measure for skills

$$U_i = \alpha^{\alpha} \left(1 - \alpha\right)^{1 - \alpha} \frac{w_{ij}}{p_i^{\alpha}}$$

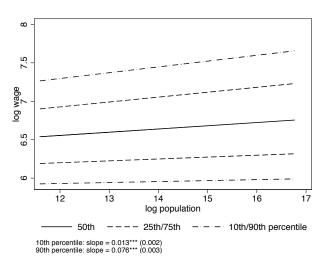
- Need to observe:
 - wage distribution wij by city
 - housing price level p_i
 - budget share of housing α $\widehat{\alpha}=$ 0.24 from Davis and Ortalo-Magné (RED 2010)

WAGES CPS 2009

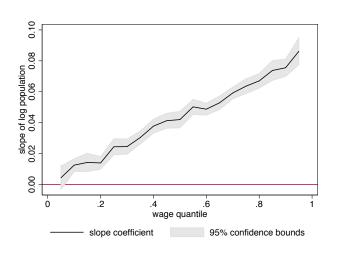


10th percentile: pop < 1m = 5.93, pop > 2.5m = 5.99, diff = 0.065^{***} (0.007) 90th percentile: pop < 1m = 7.36, pop > 2.5m = 7.56, diff = 0.198^{***} (0.007)

WAGES AND CITY SIZE



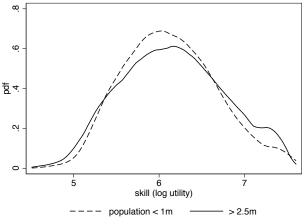
WAGES AND CITY SIZE



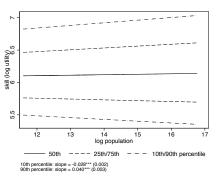
HOUSING PRICES

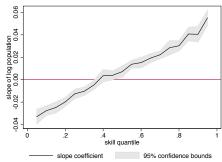
- American Community Survey (ACS) 2009
- Rental prices (robust: sales)
- ⇒ Hedonic price schedule: to obtain housing price index

Skill measure: $\frac{w_i}{p_i^{\alpha}}$



10th percentile: pop < 1m = 5.44, pop > 2.5m = 5.36, $diff = -0.074^{***}$ (0.006) 90th percentile: pop < 1m = 6.86, pop > 2.5m = 6.99, $diff = 0.132^{***}$ (0.009)





1. Constant mean:

```
housing cost increases 4 \times faster than wages \Rightarrow 1.169^{0.24} = 1.038 \approx 1.042
```

- 2. Variance increases in city size
- .. Skill distribution has fat tails

1. Constant mean:

housing cost increases 4
$$\times$$
 faster than wages $\Rightarrow 1.169^{0.24} = 1.038 \approx 1.042$

- 2. Variance increases in city size
- ... Skill distribution has fat tails \rightarrow extreme-skill complementarity

$$A_{j}F = A_{j} \left[m_{2j}^{\gamma} y_{2} + (m_{1j}^{\gamma} y_{1} + m_{3j}^{\gamma} y_{3})^{\lambda} \right]^{\beta}, \quad \lambda > 1$$

1. Constant mean:

housing cost increases 4
$$\times$$
 faster than wages $\Rightarrow 1.169^{0.24} = 1.038 \approx 1.042$

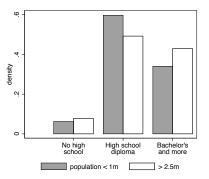
- 2. Variance increases in city size
- ... Skill distribution has fat tails \rightarrow extreme-skill complementarity

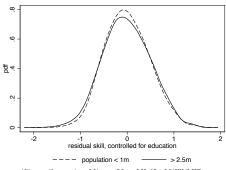
$$A_{j}F = A_{j} \left[m_{2j}^{\gamma} y_{2} + (m_{1j}^{\gamma} y_{1} + m_{3j}^{\gamma} y_{3})^{\lambda} \right]^{\beta}, \quad \lambda > 1$$

- ightarrow Interpretation: high skilled workers need low-skilled services for production
 - administrative/sales help
 - household help and child care
 - food services, restaurants,...

ROBUSTNESS: OBSERVABLES

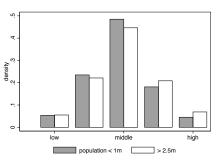
EDUCATION: A DIRECT MEASURE OF SKILL

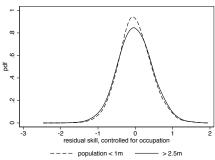




10th percentile: pop < 1m = -0.61, pop > 2.5m = -0.65, $diff = -0.046^{***}$ (0.007) 90th percentile: pop < 1m = 0.64, pop > 2.5m = 0.67, $diff = 0.032^{***}$ (0.008)

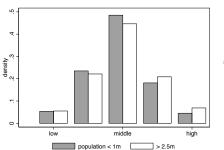
OCCUPATION

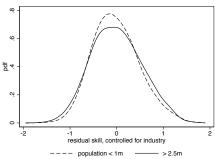




10th percentile: pop < 1m = -0.55, pop > 2.5m = -0.59, diff = -0.042*** (0.006) 90th percentile: pop < 1m = 0.56, pop > 2.5m = 0.60, diff = 0.040*** (0.007)

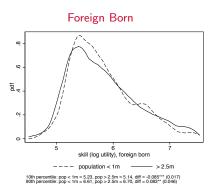
INDUSTRIAL COMPOSITION

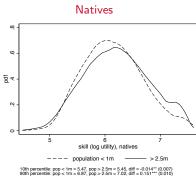




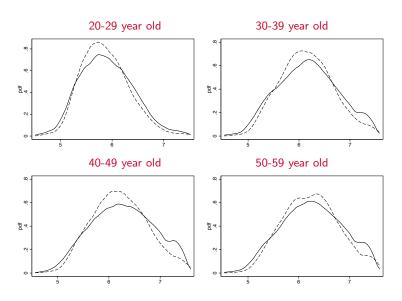
10th percentile: pop < 1m = -0.63, pop > 2.5m = -0.69, $diff = -0.053^{***}$ (0.006) 90th percentile: pop < 1m = 0.66, pop > 2.5m = 0.74, $diff = 0.074^{***}$ (0.008)

MIGRATION





Age

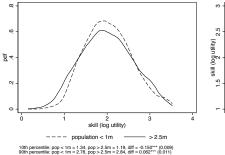


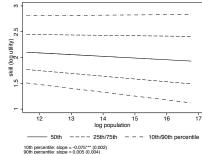
DECOMPOSING THE SKILL DISTRIBUTIONS

SMALL VS. BIG CITIES

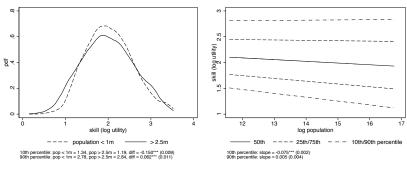
	10	% Quantile	<u>:</u>	90	% Quantile	
Observed Quantiles:						
- Large cities	5.365	(0.004)	***	6.994	(0.006)	***
- Small cities	5.439	(0.005)	***	6.862	(0.007)	***
- Difference	-0.074	(0.006)	***	0.132	(0.009)	***
Firpo, Fortin, Lemieux (2009)						
Predicted Quantiles:						
- Large cities	5.387	(0.005)	***	7.022	(0.005)	***
- Small cities	5.454	(0.004)	***	6.878	(0.008)	***
- Difference	-0.068	(0.007)	***	0.144	(0.009)	***
Explained by observables:						
- Education (16 categories)	0.003	(0.002)	**	0.052	(0.002)	***
 Occupation (22 categories) 	0.004	(0.002)	*	0.025	(0.003)	***
- Industry (51 categories)	-0.001	(0.002)		0.013	(0.002)	***
- Race (4 groups)	-0.004	(0.001)	***	-0.015	(0.001)	***
- Sex	-0.001	(0.001)	*	-0.002	(0.001)	*
- Foreign born	-0.020	(0.002)	***	-0.004	(0.001)	***
- Age (2nd order polynomial)	0.000	(0.001)		-0.002	(0.001)	*
Total explained by observables	-0.018	(0.004)	***	0.067	(0.005)	***
Not explained by observables	-0.049	(0.006)	***	0.077	(0.008)	***
Chernozhukov, Fernández-Val, Melly (2012)						
Predicted Quantile difference	-0.068	(0.006)		0.113	(0.009)	
Explained by observables	-0.019	(0.004)		0.064	(0.005)	
Not explained by observables	-0.050	(0.007)		0.049	(0.007)	

Variation in all consumption prices





Variation in all consumption prices



- Prices for grocery items (sausage), housing (rent), utilities (phone call), transportation (gasoline), health care (Lipitor) and services (haircut).
- Does not correct (enough) for quality differences
- ightarrow Likely to overstate price differentials
- ⇒ We see above figure as *upper bound*

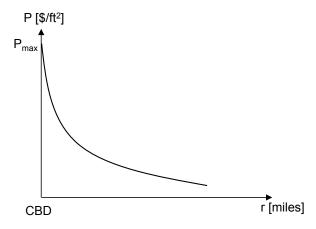
DISCUSSION

- Sorting within Cities
- Non-linear Engel Curves
- Quantifying Production Technology

WHAT IS THE RELEVANT HOUSING PRICE?

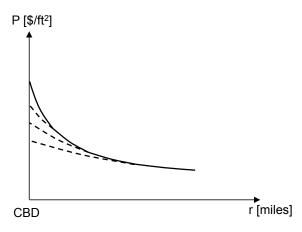
What is the relevant housing price?

Monocentric city without sorting



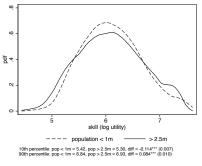
WHAT IS THE RELEVANT HOUSING PRICE?

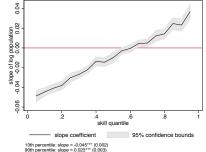
Monocentric city with sorting



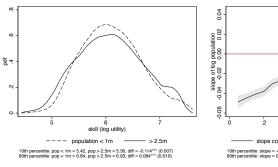
SORTING WITHIN CITIES UTILITY BASED ON HIGHEST PRICE IN CBSA

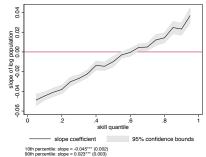
UTILITY BASED ON HIGHEST PRICE IN CBSA





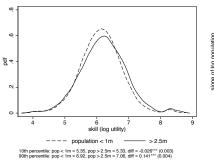
UTILITY BASED ON HIGHEST PRICE IN CBSA

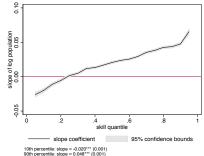




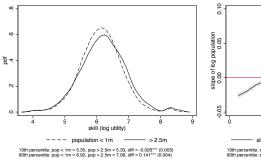
• Upper bound of relevant price

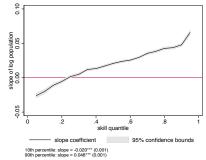
UTILITY BASED ON PRICE OF NEIGHBOURHOOD (PUMA)





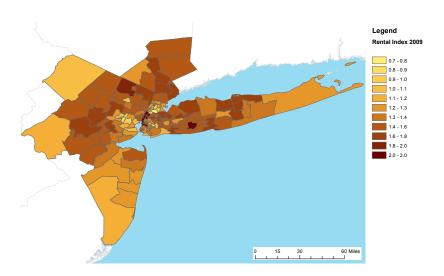
UTILITY BASED ON PRICE OF NEIGHBOURHOOD (PUMA)



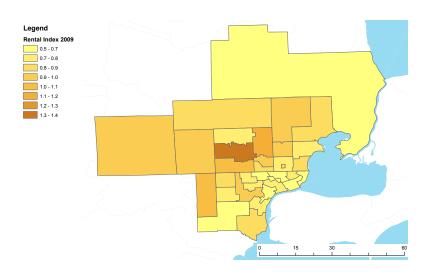


· Lower bound of relevant price

NEW YORK CITY



Detroit



Non-Linear Engel Curves

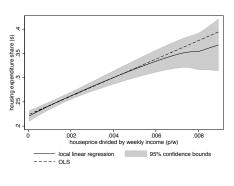
Stone-Geary utility function

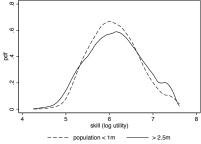
$$u(c,h) = c^{1-\alpha}(h-\underline{h})^{\alpha} \Rightarrow \frac{ph^{*}}{w} = \alpha + (1-\alpha)h^{*}\frac{p}{w}$$

• Using CEX, estimate $\widehat{\underline{h}} = \widehat{\beta}/(1-\widehat{\alpha})$ from

$$s_i = \alpha + \beta \frac{p_j}{w_i} + \varepsilon_i$$

NON-LINEAR ENGEL CURVES





 $\hat{\alpha} = 0.224$ (s.e.= 0.005), $\hat{\underline{h}} = 27.7$ (3.8)

10th percentile: pop < 1m = 5.39, pop > 2.5m = 5.30, $diff = -0.091^{***}$ (0.007) 90th percentile: pop < 1m = 6.86, pop > 2.5m = 7.00, $diff = 0.136^{***}$ (0.009)

QUANTIFIYING PRODUCTION TECHNOLOGY

$$\lambda = \frac{1}{\gamma} \left[1 + \frac{(\gamma - 1) \log \left(\frac{C_2 m_{21}}{M_2 - C_1 m_{21}} \right)}{\log \left(\frac{C_2 m_{11}}{M_1 - C_1 m_{11}} \right)} \right]$$

$$A_1 = \frac{w_{21}}{\gamma y_2 m_{21}^{\gamma - 1}}, \quad A_2 = A_1 \left(\frac{p_2}{p_1} \right)^{\alpha} \left(\frac{C_2 m_{21}}{M_2 - C_1 m_{21}} \right)^{\gamma - 1}$$

$$y_1 = \left(\frac{w_{11}}{\lambda \gamma A_1 \left[m_{11} + m_{31} \frac{w_{31}}{w_{11}} \right]^{\lambda - 1} m_{11}^{\lambda (\gamma - 1)}} \right)^{\frac{1}{\lambda}}$$

$$y_3 = \left(\frac{w_{31}}{\lambda \gamma A_1 \left[m_{31} + m_{11} \frac{w_{11}}{w_{31}} \right]^{\lambda - 1} m_{31}^{\lambda (\gamma - 1)}} \right)^{\frac{1}{\lambda}}$$

QUANTIFIYING PRODUCTION TECHNOLOGY

Observed model outcomes:							
city j	w_{1j}	W_{2j}	W 3j	m_{1j}	m_{2j}	m_{3j}	C_j
1	416	844	1923	730,509	1,953,303	730,509	21
2	354	717	1634	30,900	105,516	30,900	204
Implied	Implied production technology for different values of γ :						
γ	λ	A_1	A_2	<i>y</i> 1	<i>y</i> ₂	<i>y</i> ₃	
0.655	1.0407	190,228	59,107	0.2329	1	1.0762	
8.0	1.0193	19,118	9,065	0.3189	1	1.4733	
0.9	1.0086	3,992	2,534	0.3964	1	1.8317	

OPEN QUESTION CITY-SPECIFIC OPTIMAL TAXATION

- Progressive tax: affects worker of same skill more in big city
- Average tax rate: 3% points difference at median:

OPEN QUESTION CITY-SPECIFIC OPTIMAL TAXATION

- Progressive tax: affects worker of same skill more in big city
- Average tax rate: 3% points difference at median:

	Population	Wage level	Avg. Tax Rate
New York	19 million	1.20	16%
Janesville, WI	160,000	1.00	13%

OPEN QUESTION CITY-SPECIFIC OPTIMAL TAXATION

- Progressive tax: affects worker of same skill more in big city
- Average tax rate: 3% points difference at median:

	Population	Wage level	Avg. Tax Rate
New York	19 million	1.20	16%
Janesville, WI	160,000	1.00	13%

- Due to mobility: no redistribution! Same skills, same utility
- Policy: city-specific progressive tax: adjust for city-level wages
 - Net wages in large cities ↑
 - Move from small cities to large cities: average city size ↑
 - GDP and Utility ↑ everywhere

SPATIAL SORTING

Jan Eeckhout (University College London and GSE-UPF)
Roberto Pinheiro (Colorado)
Kurt Schmidheiny (Basel)

University of Mannheim April 16, 2013