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CITY AS A TEAM

SORTING ACROSS SPACE




THE MODEL

e J locations (cities) j € J ={1,...,J}

e Fixed amount of land (housing) H;



CITIZENS

e Citizens (workers) with heterogenous skills x;

e Preferences over consumption and housing (price p):
u(c, h) = ct=oh”
e Worker mobility = utility equalization across cities:

u(cij, hip) = ulcyr, hyp), Vi #j



TECHNOLOGY

e Cities differ exogenously in TFP A;

e Representative firm in city j produces
AjF(mlj, ceey m/J-)

m;;: employment level of skill /; given wages w;;
e Nested CES ~ Krusell-Violante-Ohanian-Rios (2000)
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. Top-Skill Complementarity
% ¥ vy’
AiF = Aj | miy1 + (m2; y2 + m3j7y3) }

A. X > 1: skills 2 and 3 are (relative) complements;
B. X < 1: skills 2 and 3 are (relative) substitutes;
C. A=1: CES

. Bottom-Skill Complementarity: see 2.



MARKET CLEARING

Housing market: El{zl hijmj; = H;

Labour market: Zle mjj = M;  (M;: total # of skill i)
City population: §; = Zle mj;

Two types of cities, (i, C; of each type



CITIZEN’S PROBLEM

e Optimal consumption

Wi
Pj

k=

7=1—-a)w; and hr=a

e Indirect utility function

Wi
(e}

Uy=a“(1—a)™@
( ) o

= From mobility, utility equalization:
Wit W2

py  ps




EXTREME-SKILL COMPLEMENTARITY

EQUILIBRIUM CONDITIONS (3 = 1)

A1
~1

AA; [mflyj.yl + mgj}@] ymi;y1 —wy; =0
~1

YAimy; y2 — wpj =0

-1 B
AA; [miyj-yl + mgjy3] fym;’j 1y3 —w3j =0



EXTREME-SKILL COMPLEMENTARITY

EQUILIBRIUM DEMAND (8 = 1)

e Equilibrium demand for middle skills my1:
1
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EXTREME-SKILL COMPLEMENTARITY

EQUILIBRIUM DEMAND (8 = 1)

e Equilibrium demand for middle skills my1:

_1
p\" AT M
P2 Ar G

e and extreme skills

likewise for msy
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MAIN RESULTS

Theorem 1. City Size and TFP
The more productive city is larger, 51 > 5,

Theorem 2. Extreme-Skill Complementarity and Fat Tails
The skill distribution in the larger city has fatter tails

— Mechanism: skill complementarity also in small cities, but demand
for extreme skills is higher in big cities due to TFP (A;)
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MAIN RESULTS

Corollary 1. CES technology
If A =1, then the skill distribution across cities is identical

Corollary 2. Extreme-Skill Substitutability and Thin Tails
The skill distribution in the larger city has thinner tails

Theorem 3. Top-Skill Complementarity and FOSD
The skill distribution in the larger city first-order stoch. dominates
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MAIN RESULTS

5 TECHNOLOGIES — 5 DISTRIBUTIONS

Extreme-Skill Complementarity = fat tails
Extreme-Skill Substitutability = thin tails
Top-Skill Complementarity = FOSD of big city
Top-Skill Substitutability = FOSD of small city
Constant Elasticity (CES) = identical distributions
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EMPIRICAL EVIDENCE

e Use theory to obtain a measure for skills

Wij
&
J

U=a"(1-a)"

e Need to observe:
- wage distribution wj; by city
- housing price level p;

- budget share of housing «
& = 0.24 from Davis and Ortalo-Magné (RED 2010)
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WAGES
CPS 2009

log wage

———— population<1m — >25m

10th percentile: pop < 1m = 5.93, pop > 2.5m = 5.99, diff = 0.065*** (0.007)
90th percentile: pop < 1m = 7.36, pop > 2.5m = 7.56, diff = 0.198*** (0.007)




WAGES AND CITY SIZE
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log population

50th ———— 25th/75th — — —- 10th/90th percentile

10th percentile: slope = 0.013*** (0.002)
90th percentile: slope = 0.076*** (0.003)
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HOUSING PRICES

e American Community Survey (ACS) 2009
e Rental prices (robust: sales)

=- Hedonic price schedule: to obtain housing price index



SKILLS AND CITY SIZE

SKILL MEASURE: pﬂo

i

T T T
5 6 7
skill (log utility)

———— population <1m — >2.5m

10th percentile: pop < 1m = 5.44, pop > 2.5m = 5.36, diff = -0.074*** (0.006)
90th percentile: pop < 1m = 6.86, pop > 2.5m = 6.99, diff = 0.132*** (0.009)



SKILLS AND CITY SIZE
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SKILLS AND CITY SIZE

1. Constant mean:
housing cost increases 4 x faster than wages
= 1.169%2% = 1.038 ~ 1.042

2. Variance increases in city size

.. Skill distribution has fat tails — extreme-skill complementarity

B
AF = A m;jyz + (mlﬂyl + m3ﬂy3)’\} , A>1

— Interpretation: high skilled workers need low-skilled services
for production
e administrative/sales help
e household help and child care
e food services, restaurants,...



ROBUSTNESS: OBSERVABLES



EDUCATION: A DIRECT MEASURE OF SKILL

A

T T T
No high High school Bachelor's
school diploma and more

[ populaton<1m [ ]>25m

T T

-1 0 1
residual skill, controlled for education

———— populaton<im ——— >2.5m

10th percentile: pop < 1m = -0.61, pop > 2.5m =-0.65, diff = -0.046""* (0.007)
90th percentile: pop < 1m = 0.64, pop > 2.5m = 0.67, diff = 0.032"** (0.008)




OCCUPATION

al,

low middle

high

[ populaton<1im [___]>25m

T T T
-3 -2 -1 0 1
residual skill, controlled for occupation
>2.5m

-0.042*** (0.006)
040*** (0.007)

———— population < 1m

10th percentile: pop < 1
90th percentile: pop < 1




INDUSTRIAL COMPOSITION

0 ]
<«
o
2
2
&
- I:| I:|
o W] m
T T T
low middle high
[ populaton<1im [___]>25m

T T
-1 0 1
residual skill, controlled for industry
———— population < 1m — >25m

-0.053"** (0.006)
074" (0.008)

10th percentile: pop < 1m

0.63, pop > 2.51
90th percentile: pop < 1m = 0.6

.66, pop >2.5m = 0.




MIGRATION

Foreign Born Natives

6 7 5 6
skill (log utility), foreign born skill (log utility), natives
———— population <1m — >25m ———— population <1m — >25m

10th percentile: pop < 1m = 5.23, pop > 2.5m = 5.14, diff = -0.085"** (0.017) 10th percentile: pop < 1m = 5.47, pop > 2.5m
90th percentile: pop < 1m = 6.61, pop > 2.5m = 6.70, diff = 0.083"* (0.046) 90th percentile: pop < 1m = 6.87, pop > 2.5m

45, diff =-0,014" (0.007)
02, diff = 0.151*** (0.010)




20-29 year old 30-39 year old




DECOMPOSING THE SKILL DISTRIBUTIONS

SMALL VS. BIG CITIES

10% Quantile 90% Quantile
Observed Quantiles:
- Large cities 5365  (0.004)  *x* 6.994  (0.006)  **x
- Small cities 5.439 (0.005) Hokk 6.862 (0.007) Hokk
- Difference -0.074 (0.006) Hork 0.132 (0.009) Hork
Firpo, Fortin, Lemieux (2009)
Predicted Quantiles:
- Large cities 5387 (0.005)  *** 7.022  (0.005)  **x
- Small cities 5454 (0.004)  *x* 6.878  (0.008)  **x
- Difference -0.068 (0.007) Frk 0.144 (0.009) Fork
Explained by observables:
- Education (16 categories) 0.003 (0.002) ** 0.052 (0.002) Hokk
- Occupation (22 categories) 0.004 (0.002) * 0.025 (0.003) Fxx
- Industry (51 categories) -0.001 (0.002) 0.013 (0.002) *xx
- Race (4 groups) -0.004 (0.001) Hrk -0.015 (0.001) Hrk
- Sex -0.001 (0.001) * -0.002 (0.001) *
- Foreign born -0.020 (0.002) Hrk -0.004 (0.001) *rk
- Age (2nd order polynomial) 0.000 (0.001) -0.002 (0.001) *
Total explained by observables -0.018 (0.004) *rk 0.067 (0.005) *rk
Not explained by observables -0.049 (0.006) *rk 0.077 (0.008) *rk
Chernozhukov, Fernandez-Val, Melly (2012)
Predicted Quantile difference -0.068 (0.006) 0.113 (0.009)
Explained by observables -0.019 (0.004) 0.064 (0.005)

Not explained by observables -0.050 (0.007) 0.049 (0.007)




VARIATION IN all CONSUMPTION PRICES

T T T T
2
skill (log utility)

>2.5m

0. Isq:"((o 00?)

———— population <1m

10th percentile: pop < 1m
90th percentile: pop < 1m

34, pop >2.5m = 1.19, di
78, pop > 2.5m = 2.84, di

14
log population

50th ———— 25th/75th — — —- 10th/90th percentile

10th percentile: slope = -0.075"** (0.002)
90th percentile: slope = 0.005 (0.004)




VARIATION IN all CONSUMPTION PRICES
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>2.5m 50th ———— 25th/75th — — —- 10th/90th percentile

———— population <1m

10th percentile: slope = -0.075"** (0.002)

10th percentile: pop < 1m = 1.34, pop > 2.5m = 1.19, diff = 0.150"* (0.009)
) 90th percentile: slope = 0.005 (0.004)

90th percentile: pop < 1m = 2.78, pop > 2.5m = 2.84, diff = 0.062"** (0.011

® Prices for grocery items (sausage), housing (rent), utilities (phone call),
transportation (gasoline), health care (Lipitor) and services (haircut).

e Does not correct (enough) for quality differences
— Likely to overstate price differentials
= We see above figure as upper bound



Di1sCcUSsSION

e Sorting within Cities
e Non-linear Engel Curves

e Quantifying Production Technology
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Monocentric city without sorting
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SORTING WITHIN CITIES

WHAT IS THE RELEVANT HOUSING PRICE?

Monocentric city with sorting

P [$/t2]

A

CBD r [miles]
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UTILITY BASED ON HIGHEST PRICE IN CBSA

slope of log population

-0.04

0.02 0.04

-0.02 0.00

T r T
skill log utility)

———— population <1m — >25m

01147 (0.007)
**(0.010)

10th percentile: pop < 1m

42, pop >2.5m = 5.30, di
90th percentile: pop < 1m

84, pop >2.5m = 6.93, di

-0.06

4 6
skill quantile

slope coefficient

10th percentile: slope
90th percentile: slope

045" (0.002)
023"** (0.003)

95% confidence bounds




SORTING WITHIN CITIES

UTILITY BASED ON HIGHEST PRICE IN CBSA

0.02 0.04

slope of log population
0.02  0.00

<
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<
©
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5 6 7 [ 2 4 6 8
skill (log utility) skill quantile
———— population <1m >25m slope coefficient 95% confidence bounds
10th percentile: pop < 1m = 5.42, pop > 2.5m = 5.30, diff = 0.114*** (0.007) 10th percentie: slope = -0.045°** (0.002)
90th percentile: pop < 1m = 6.84, pop > 2.5m = 6.93, diff = 0.084*** (0.010) 90th percentile: slope = 0.023"** (0.003)

e Upper bound of relevant price



SORTING WITHIN CITIES

UTILITY BASED ON PRICE OF NEIGHBOURHOOD (PUMA)

0.10

0.05
!

slope of log population
0.00

7
skill log utilty)

>2.5m

026" (0.003)
141+ (0.004)

———— population <1m

10th percentile: pop < 1m = 5.35, pop > 2.5m = 5.3, dif
90th percentile: pop < 1m = 6.92, pop > 2.5m = 7.06, di

-0.05

4 6
skill quantile

slope coefficient 95% confidence bounds

10th percentile: slope = -0.020"** (0.001)
90th percentile: slope = 0.048"** (0.001)



SORTING WITHIN CITIES

UTILITY BASED ON PRICE OF NEIGHBOURHOOD (PUMA)
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skill (log utility) skill quantile
———— population <1m >25m slope coefficient 95% confidence bounds
10th percentile: pop < 1m = 5.35, pop > 2.5m = 5.33, diff = -0,026* (0.003) 10th percentie: slope = -0.020"" (0.001)
90th percentile: pop < 1m = 6.92, pop > 2.5m = 7.06, diff = 0.141** (u 004) 90th percentile: slope = 0.048"** (0.001)

e Lower bound of relevant price



SORTING WITHIN CITIES

NEwW YORrRK CITY

Legend
Rental Index 2009
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SORTING WITHIN CITIES

DETROIT

Legend

Rental Index 2009
[ Jos-o7
[ Jo7-08

[ Jos-09
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[]10-14
[ 11-12
[ 12-13
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NON-LINEAR ENGEL CURVES

e Stone-Geary utility function

_ h* p
h) = -« h— h)® L — . *
weh) = (- = BT o @-aml
e Using CEX, estimate h = 3/(1 — @) from

s=a+p2 te
W

1



NON-LINEAR

3 .35 4
! ! L

housing expenditure share (s)
25

ENGEL CURVES

T T
.002 .004 .006 .008
houseprice divided by weekly income (p/w)
local linear regression 95% confidence bounds
————— oLs

@ = 0.224 (s.e.= 0.005), h = 27.7 (3.8)

T T . T
skill (log utility)

———— population <1m — >2.5m

10th percentile: pop < 1m = 5.39, pop >2.5m

.30, diff = -0.091*** (0.007)
90th percentile: pop < 1m = 6.86, pop > 2.5m

00, diff = 0.136*** (0.009)




QUANTIFIYING PRODUCTION TECHNOLOGY
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QUANTIFIYING PRODUCTION TECHNOLOGY

Observed model outcomes:

city j wij Woj wsj myj myj msj G
1 416 844 1923 730,509 1,953,303 730,509 21
2 354 717 1634 30,900 105,516 30,900 204
Implied production technology for different values of ~:

5 A Ax Az »n Y2 Y3

0.655 1.0407 190,228 59,107 0.2329 1 1.0762

0.8 1.0193 19,118 9,065 0.3189 1 1.4733

0.9 1.0086 3,992 2,534 0.3964 1 1.8317




OPEN QUESTION

CI1TY-SPECIFIC OPTIMAL TAXATION

e Progressive tax: affects worker of same skill more in big city

e Average tax rate: 3% points difference at median:



OPEN QUESTION

CI1TY-SPECIFIC OPTIMAL TAXATION

e Progressive tax: affects worker of same skill more in big city

e Average tax rate: 3% points difference at median:

Population Wage level Avg. Tax Rate

New York 19 million 1.20 16%
Janesville, WI 160,000 1.00 13%




OPEN QUESTION

CI1TY-SPECIFIC OPTIMAL TAXATION

Progressive tax: affects worker of same skill more in big city

Average tax rate: 3% points difference at median:

Population Wage level Avg. Tax Rate
New York 19 million 1.20 16%
Janesville, WI 160,000 1.00 13%

Due to mobility: no redistribution! Same skills, same utility
Policy: city-specific progressive tax: adjust for city-level wages
o Net wages in large cities T

e Move from small cities to large cities: average city size 1
e GDP and Utility T everywhere
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