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Motivation

• We explore the following matching problem:
• A population of heterogeneous agents must be partitioned in

groups of a given size (not necessarily two)
• Agents differ in expertise in estimating an unknown variable

that is relevant for the performance of the group
• Expertise ≡ Information technology that generates a signal

about the unknown variable of interest
• A better expert is one with a more informative technology

• Within a group, agents take a joint action
• Agents can make monetary transfers among themselves



Motivation

• We address the following standard matching question:
• What is the optimal sorting of agents into groups?
• Will more informed agents be paired with more or less

informed ones?

• We also shed light on:
• The role of correlated information on sorting patterns
• Matching groups of experts with heterogeneous firms
• Endogenous group size



Motivation

• Remarks:
• Many Groups
• Interpretations: Partnerships, groups that are paired with

identical firms, groups within an organization
• Matchmaker can be the planner, or can take place in a

decentralized market
• Applications: financial experts, R&D groups, composition of

skilled workers across firms, etc.



Main Insight

• Diversification of expertise within groups is optimal
• Even if in isolation more information is better
• Matching ⇒ information diversification

• In the canonical case of conditionally independent signals, we
obtain a stronger result:

1. Maximally balanced teams are optimal
2. Strong form of diversification of expertise



Related Literature
Matching

• Becker (1973) theory of marriage (see also Legros and
Newman (2007), and assignment games)
• Matching problem among heterogeneous men and women
• Match output depends on their attributes
• Transferable utility
• Positive (negative) sorting (PAM or NAM) if supermodular

(submodular) payoff
• Both centralized solution and competitive equilibrium

• Pycia (2012) matching with peer effects

• Kelso and Crawford (1982) labor market model

• Most applications assume attributes are scalars (ordered)

• More general interpretation: stochastic sorting



Related Literature
Theory of Teams

• Marschak-Radner’s (1972) theory of teams (see also Cremer
(1990), Prat (2002), Lamberson and Page (2011), etc.)
• Information decentralization: decision makers have

heterogeneous information within an organization
• Need to make decision with common goal
• What is the optimal decision function given information?
• Compare different information structures

• Meyer (1984) on fractional assignment

• Olzewski and Vohra (2012) on optimal composition of a team

• Unlike this literature:
• Many teams that form instead of a team in isolation
• Matching problem



Related Literature
Value of Information

• The paper is related to three topics in this literature:
1. Comparison of multivariate normal experiments: Hansen and

Torgersen (1974), Shaked and Tong (1990, 1992)
• In our model, each group runs a multivariate normal

experiment
• Correlation affects informativeness of the signals

2. Substitute and complementary signals: Borgers,
Hernando-Veciana, and Krämer (2010)
• We provide results for normally distributed signals
• We cast model as a matching problem

3. Value of Information: Radner and Stiglitz (1984), Chade and
Schlee (2002), Moscarini and Smith (2002)
• We exploit concavity properties of the quadratic

payoff/normal signals problem
• Shed light on extent to which results generalize



Related Literature
Partitioning Problems

• There is a recent literature in discrete optimization on
partitioning problems: Chakravarty, Orlin, Rothblum (1985),
Anily and Federgruen (1991), Hwang and Rothblum (2012)
• They focus on problems that deliver consecutive partitions

(similar to PAM)
• Our model does not fit their framework: harder to solve



Model

• Agents
• Finite set I of agents, with |I | = kN
• Set of ‘types’ [x , x ]: function x : I → [x , x ] assigns types to

agents, where x(i) ≡ xi , i = 1, 2, ..., kN
• Υ = {x1, x2, ...., xkN} (multiset), assume x1 ≤ x2 ≤ · · · ≤ xkN
• Each agent assigned to a group of size k ; there are N groups



Model

• Information
• State of the world, prior belief s̃ ∼ N (µ, τ−1)
• Agent xi observes signal σ̃i ∼ f (·|s, xi ) = N (s, x−1i )
• Informativeness: xi ↑ ⇒ more informative signals (Blackwell)
• Signals from different partners can be correlated, with pairwise

covariance given by ρ/(xixj)
0.5, for all i , j , i 6= j

• ρ ∈ (−(k − 1)−1, 1) to ensure that the covariance matrix is
positive semi-definite



Model

• Actions and payoffs
• Group observes signal realizations of all partners ⇒ choose

joint, signal-contingent action
• Joint action a ∈ R to maximize the group’s profit
• Maximize expected value of π − (a− s)2, where π ≥ 1/τ



Group Problem

• A group S with types ~xS = (xS
1 , x

S
2 , ..., x

S
k )

• Choose a : Rk → R to maximize

V
(
~xS
)

= max
a(·)

π −
∫
· · ·
∫

[a(~σ)− s]2 f (~σ|s, ~xS , ρ)h(s)
k∏

i=1

dσids

where ~σ = (σ1, σ2, ..., σk), and f (~σ|s,~xS , ρ) is the joint
density of the signals generated by the members of the group
(distributed according to a multivariate normal)

• Denote by V
(
~xS
)

the maximum expected payoff of group S



Matching

• Matching: partition of Υ = {x1, x2, ...., xkN} in groups
(sub-multisets) of size k

• N elements in each partition

• Transferable utility

• Optimal partition problem
• Find partition that maximizes

∑
S V (~xS)

• Remark:
• Allocation can be decentralized if k = 2 (Becker (1973)) or if

there is fractional assignment
• No general result for integer assignment with k > 2 since

Kelso and Crawford (1982) gross substitutes condition fails



Solution to the Group Problem

• After observing ~σ, the posterior density function h
(
·
∣∣~σ,~xS , ρ

)
is normally distributed

• Optimal action solves

max
a∈R

π −
∫

(a− s)2h
(

s|~σ,~xS , ρ
)

ds

• From FOC,

a?(~σ) =

∫
s h
(

s|~σ,~xS , ρ
)

ds = E
[
s̃|~σ,~xS , ρ

]
• Inserting a?(~σ) in objective function we obtain, after algebra,

V
(
~xS
)

= π −
∫
· · ·
∫

Var
(

s|~σ,~xS , ρ
)

f
(
~σ|~xS , ρ

) k∏
i=1

dσi

where f
(
~σ|~xS , ρ

)
≡
∫

f (~σ|s,~xS , ρ)h(s)ds



Solution to the Group Problem

• Algebra is as follows: V
(
~xS
)

equals

= π −
∫
· · ·
∫ (

E
[
s̃|~σ,~xS

]
− s
)2

f (~σ|s, ~xS , ρ)h(s)
k∏

i=1

dσids

(2)
= π −

∫
· · ·
∫ (∫ (

s − E
[
s̃|~σ,~xS

])2
h(s|~σ,~xS , ρ)ds

)
f (~σ|~xS , ρ)

k∏
i=1

dσi

(3)
= π −

∫
· · ·
∫

Var
(
s|~σ,~xS , ρ

)
f (~σ|~xS , ρ)

k∏
i=1

dσi

• where:

(2) from h(s|~σ,~xS , ρ)f (~σ|~xS , ρ) = h(s)f (~σ|s,~xS , ρ)
(3) replacing the expression for the variance of posterior density



Solution to the Group Problem

• Easy to compute in the conditionally independent case (ρ = 0)

• After observing ~σ, the posterior density function:

h
(
·
∣∣∣~σ,~xS

)
∼ N

(
µτ +

∑k
i=1 σix

S
i

τ +
∑k

i=1 xS
i

,
1

τ +
∑k

i=1 xS
i

)

• Notice that the variance of the posterior is independent of ~σ

• Therefore

V
(
~xS
)

= π −

(
1

τ +
∑k

i=1 xS
i

)



Solution to the Group Problem

• More generally, we have the following result:

Proposition
The value function of the group problem is

V
(
~xS
)

= π −
(

1

τ + B(~xS , ρ)

)
where

B(~xS , ρ) =
(1 + (k − 2)ρ)

∑k
i=1 xS

i − 2ρ
∑k−1

i=1

∑k
j=i+1(xS

i xS
j )0.5

(1− ρ)(1 + (k − 1)ρ)

• B(~xS , ρ) is the index of informativeness
• Higher B(~xS , ρ) implies Blackwell-more-informative signals
• B(~xS , 0) =

∑
xS
i , and if xi = x for all i then B(~xS , 0) = kx



Solution to the Group Problem

• Some special cases of

V
(
~xS
)

= π−

 1

τ +
(1+(k−2)ρ)

∑k
i=1 x

S
i −2ρ

∑k−1
i=1

∑k
j=i+1(x

S
i x

S
j )

0.5

(1−ρ)(1+(k−1)ρ)


• ρ = 0 yields the conditionally independent case
• k = 2 yields

V
(
~xS
)

= π −

 1

τ +
xS
1 +xS

2 −2ρ(xS
1 x

S
2 )

0.5

(1−ρ2)


• xS

1 = xS
2 = ... = xS

k = x yields

V
(
~xS
)

= π −

(
1

τ + kx
1+(k−1)ρ

)



Solution to the Group Problem

• The proof is by induction after obtaining the general
functional form of the inverse of the covariance matrix

• Sketch:
• Start with s ∼ N(µ, 1/τ), σ1 ∼ N(s, 1/x1) and

s|σ1 ∼ N(µ1, 1/τ1)
• Show that formula holds for k = 1 (trivial)
• Assume true for k = n − 1
• Find σn|σ1,...,σn−1,s and compute s|σ1,...,σn

• Show formula holds for k = n



Solution to the Group Problem

• A generalization of objective function:
• Same value function if π − (a− s)n, n even (since all odd

centered moments of normal are zero)

• A generalization to a class of distributions:
• Same value function if:

• Restriction to actions that are weighted averages of signals
• Joint signal distribution has mean and covariance assumed



Correlation and Informativeness

• Let k = 2 and xS
1 = xS

2 = x
• Then B(~xS , ρ) = 2x

(1+ρ) ≷ 2x = B(~xS , 0) if ρ ≶ 0

• Negatively (positively) correlated signals are more (less)
informative than conditionally independent ones

• Some ‘intuition’
• Consider first extreme cases of ρ = ±1

• More generally, σ2|σ1,s ∼ N
(

(1− ρ)s + ρσ1,
1−ρ2
x

)
• Correlation reduces variance of second signal
• Negative correlation makes mean ‘more sensitive’ to s

• In the general case we have the following result:

Proposition (Correlation and Team Precision)

(i) If ρ < 0, then B(~xS , ρ) > B(~xS , 0)
(ii) There is a ρ̂ s.t. if 0 < ρ < ρ̂, then B(~xS , ρ) < B(~xS , 0) (∀~xS)



Optimal Matching Properties

• The main sorting properties follow from this result:

Lemma (Value Function Properties)

Consider any group S with ~xS :

(i) There exists an interval (−r , r), where r depends on (x , x , τ, k)
such that if ρ ∈ (−r , r) then V (~xS) is strictly submodular in ~xS ;

(ii) If ρ > r , then V (~xS) cannot be supermodular in ~xS , and it is
strictly submodular if τ is sufficiently large;

(iii) If ρ < −r , then V (~xS) cannot be supermodular in ~xS unless τ
is sufficiently large.

• This result reveals that the value function is:
• Submodular in many cases
• Not supermodular in most cases



Optimal Matching Properties

• The properties of the team value function yield:

Proposition (Optimality of Diversification)

(i) Diversification within teams is always optimal for values of ρ in
a neighborhood of 0.
(ii) Diversification is optimal on an open subset of [x , x ]k when ρ is
positive, and it is always optimal if τ is large enough.
(iii) Diversification is optimal when ρ is negative, so long as τ is
not too large.

• This result reveals that the optimal matching:
• Cannot be PAM except in ‘rare’ cases
• Cannot exhibit two ‘ordered’ teams (except in ‘rare’ cases)
• Exhibits ‘balanced’ expertise assignment across teams



Optimal Matching Properties

• Consider part (i) of the proposition:
• V strictly submodular on [x , x ]k for ρ ∈ (−r , r)
• Thus, PAM does not maximize

∑
V (~xS)

• Given PAM, swap (e.g.) the best expert in one group with the
worst expert in the other group

• By strict submodularity, the objective function increases

• Implication → the optimal matching will consist of teams with
diversified composition of expertise
• No team can have all members with uniformly higher types

than any other team



Optimal Matching Properties

• Consider part (ii) of the proposition:
• V cannot be supermodular on [x , x ]k if ρ > 0
• There is an open set around x1 = x2 = ... = xk such that V is

submodular in that set
• Thus, in that region one can do some profitable swapping if

types belong to it
• Diversification can ‘sometimes’ occurs (but PAM cannot occur

for all multisets Υ, or for 0 < ρ < r )
• For each ρ > 0, diversification occurs if τ is large enough



Optimal Matching Properties

• Consider part (iii) of the proposition:
• If ρ < 0, then V supermodular if τ is large enough
• Partition generates (B1, ...,BN) with ‘mean’ and ‘variance’
• B(~xS , ρ) is supermodular in ~xS when ρ < 0
• Hence, PAM maximizes

∑
BS

• As τ →∞, V = π − 1
τ+B ⇒ −VBB/VB → 0

• Thus planner behaves as if he maximizes
∑
BS when τ is large

enough, i.e., PAM is optimal
• (Similar intuition applies to ρ > 0 and τ large when k = 2)

• Remark:
• How large should τ be for PAM?
• When k = 2, for each ρ > 0, τ should be strictly bigger than

4x (two times the precision of the best team possible)
• Thus, information about s is ‘very’ precise to begin with

• If τ ≤ 4x , V is strictly submodular and diversification ensues



Optimal Matching Properties

• We can say more if k = 2
• V (·) submodular ⇒ Negative Assortative Matching
• If types x1 > x2 ≥ x3 > x4, then total payoff maximized if
{x1, x4} and {x2, x3}

• x4 can outbid x2 and x3 when competing for x1
• For k = 2, optimal matching is straightforward:

1. x1 with x2N
2. x2 with x2N−1

· · ·
N. xN with xN+1

• Similarly for PAM and supermodularity
• Optimal matching can be decentralized as outcome of

Walrasian Equilibrium



The Conditional Independent Case (CIC)

• From now on we focus on the canonical case with
conditionally independent signals

• Recall that group value functions in this case is

V
(
~xS
)

= π −

(
1

τ +
∑k

i=1 xS
i

)

• Consistent with previous result, it is strictly submodular in ~xS

• Since V (·) depends on ~xS only through the sum, we define

v
(∑

xS
i

)
≡ V

(
~xS
)



CIC: Discrete Assignment

• Given the value of a group v
(∑

xS
i

)
, what is the optimal

sorting of agents into groups?

• That is, we want the partition that maximizes
∑

S v
(∑

xS
i

)
• Sorting with k > 2 is much more complex
• v

(∑
xS
i

)
submodular ⇒ PAM not optimal

• But exact sorting pattern is not obvious
• Clear: optimal matching entails diversification within groups
⇒ balanced teams



CIC: Discrete Assignment

• Notice that:
• Every partition has the same sum

∑N
S=1

∑k
i=1 xS

i = X
• Objective function is (strictly) Schur-concave on vector of

groups precision (sums of members’ precisions) partially
ordered by majorization
• x = (x1, x2, ..., xN) majorizes x ′ = (x ′1, x

′
2, ..., x

′
N) (x � x ′) if∑m

`=1 x[`] ≥
∑m

`=1 x
′
[`] for all m, with

∑N
`=1 x[`] =

∑N
`=1 x

′
[`]

• x[`] is the `-th largest coordinate of the vector x
• Majorization can be thought of as a notion of

similarity/dispersion of vectors
• f : Rk → R is Schur concave if x � x ′ implies f (x ′) ≥ f (x)
• f (x1, x2, ..., xN) =

∑N
i=1 g(xi ) is strictly Schur concave if g is

strictly concave



CIC: Discrete Assignment

• Optimal matching in CIC:

Proposition (Maximally Balanced Teams)

Assume conditionally independent signals.

(i) The optimal matching must be an element of the set of
partitions whose team precision vectors (X1,X2, ...,XN) are
majorized by those generated by all the remaining partitions.

(ii) If a team precision vector is majorized by the precision vectors
of all the feasible partitions of the agents, then its associated
partition is the optimal matching.



CIC: Discrete Assignment

• If there is a partition that is majorized by all the other ones,
then it is optimal
• Solution is a partition with ‘lowest spread’ in group precision
→ maximum diversification

• Clearly, if there is a partition with
∑

xS = X/N for all S , this
is the solution

• Still need to prove that there is a ‘minorizing’ partition
• True if N = 2 or k = 2

• Weaker: Find partitions majorized by the remaining ones
• Solution is in the set containing those partitions

• Proposition holds for a class of matching problems with∑
v(
∑

i xi ) strictly Schur concave



CIC: Discrete Assignment

• Is there an algorithm to find the optimal partition?
• Hard problem in general (except for k = 2)
• With N = 2, equivalent to NP-hard ‘number partitioning

problem’ (Garey and Johnson (1978), Mertens (2006))
• With N = 3, equivalent to strong NP-complete 3-partition

problem (Garey and Johnson (1978))
• Related: problem is a variant of submodular welfare

maximization problem (Vondrak (2007)), which is NP-hard
• Vondrak (2007) describe an approximation algorithm that

captures 1− 1/e of optimal value

• Example of failure of a greedy algorithm:
• 8 agents with types are 1, 3, 6, 10, 12, 15, 20, 23; N = 2
• Greedy: {23, 12, 10, 1}, X1 = 46; {20, 15, 6, 3}, X2 = 44
• Optimal: {23, 15, 6, 1}, X1 = 45: {20, 12, 10, 3}, X2 = 45
• Flexible k does not solve the problem



CIC: Fractional Assignment

• No integer restriction

• Agents can be fractionally assigned to multiple groups
• Agent’s precision proportionally re-scaled according to fraction

assigned to the group

• Interpretation: Time dedication to a group given time ‘budget’

• Another interpretation: Approximates discrete solution with
large but finite teams

• Assumption: s independent across teams (to avoid
information ‘spillovers’)



CIC: Fractional Assignment

• x(I ) = {x1, ..., xJ} set of distinct types; mj # type xj

• Let X =
∑J

j=1 mjxj and
∑J

j=1 mj = kN

• µjn ≥ 0 the fractional assignment of type-j agents to group n

• The optimal fractional assignment problem solves:

max
{µjn}j,n

N∑
n=1

v

 J∑
j=1

µjnxj


s.t.

N∑
n=1

µjn = mj ∀j

J∑
j=1

µjn = k ∀n

µjn ≥ 0 ∀j , n



CIC: Fractional Assignment

• Let Xn ≡
∑J

j=1 µjnxj ⇒
∑N

n=1 Xn = X .

• The ‘relaxed problem’:

max
{Xn}Nn=1

N∑
n=1

v (Xn)

s.t.
N∑

n=1

Xn = X

• Solution is Xn = X
N , ∀n

• Maximal balance achieved: Equal precision teams



CIC: Fractional Assignment

• If {µjn} implements the solution to the relaxed problem, then
it solves the original problem.

• We have the following result:

Proposition (Perfect Diversification)

Any solution to the fractional assignment problem equalizes Xn

across all groups, i.e., entails maximum diversification.
It can be implemented using µjn = mj/N for all j , n.

• Solution is not unique except when J = 2

• Example: 1, 2, 3, 4, 5, 5

1.
{

1
21, 122, 123, 124, 225

}
⇒ both: π − 1

τ+10

2. {1, 4, 5}, {2, 3, 5} ⇒ both: π − 1
τ+10

• Unique symmetric solution



CIC: Firm Heterogeneity

• N heterogeneous firms y1 ≤ y2 ≤ ... ≤ yN

• Match payoff when firm yS matches with team
∑

xS
i is

yS · v
(∑

xS
i

)
• Notice that match payoff is supermodular in (yS ,

∑
xS
i )

• Optimal matching properties are:
• PAM between firms and groups (better firms match with

better teams)
• Diversity within groups (heterogeneous experts in each group)



CIC: Firm Heterogeneity

• We can pin down exact solution with fractional assignment

• Optimal assignment of firms to groups solves

max
X1,X2,··· ,XN

N∑
n=1

ynv (Xn)

s.t.
∑
n

Xn = X

• From FOC, we obtain

Xn =
y0.5
n∑N

n=1 y0.5
n

(τN + X )− τ



CIC: Firm Heterogeneity

• We have the following result:

Proposition (Heterogeneous Firms)

Firms with higher types are matched with higher precision teams
(X1 ≤ X2 ≤ ... ≤ XN).

An increase in τ ↑ Xn iff n ≥ n∗, and ↑ Xn − Xn−1 for all n

An increase in X ↑ Xn and ↑ Xn − Xn−1 for all n

An increase in the spread of (y1, y2, ..., yN) increases (decreases)
the precision of teams above (below) 1 ≤ n̂ ≤ N

There is a fractional assignment rule {µjn} that implements the
optimal (X1,X2, ...,XN)



CIC: Firm Heterogeneity

• Example:
• N = 2, y1 = 1, y2 = y ≥ 1, τ = 0, Υ = {5, 5, 20, 20}
• Then

X2 =
y0.5

y0.5 + 1
X

X1 =
1

y0.5 + 1
X

• Easy to show that
• If y = 1 then X2 = X1 and NAM, i.e. {5, 20}, {5, 20}
• If y = 16 then X2 = 40, X1 = 10, and PAM, i.e.,
{5, 5}, {20, 20}

• If 1 ≤ y < 16 there is diversification within groups
• Fractional assignment rule: E.g., µ20,2 = 1 + (1/15)(X2 − 25)



CIC: Fractional Assignment
Endogenous k

• One way to endogeneize k is to assume a cost function c(N)
that is strictly increasing and convex in N
• FOC that determines optimal N is

π − c ′(N) = N(Nτ + X )−1 + NX (Nτ + X )−2

• This yields N; since I is fixed, k = |I |/N is determined

• Another way to endogenize k is as follows:
• Assume that identical firms are locations where groups of size

k form (reinterpretation) under symmetric solution
• Free entry of firms, entry cost F > 0, wages wj

• For any N, wj = v ′(Xn)xj , where v ′(Xn) = (τ + Xn)−2

• Zero profit condition, Xn = X/N, and
∑

j mjxj = X yield

π − F = N(Nτ + X )−1 + NX (Nτ + X )−2



CIC: Fractional Assignment
Endogenous k

• Either way of endogeneizing k yields the following result

Proposition (Endogenous Group Size)

There exists a unique value of N and thus of k = |I |/N.

The equilibrium group size k ↓ in τ , and ↓ in X



CIC: Decentralized Market Solution

• Thus far, we have focused almost exclusively on the optimal
matching problem

• If k = 2, then it is easy to decentralize the model if we think
of it as a two-sided matching problem
• Standard results from assignment games (nonempty core,

competitive equilibrium existence)

• For k > 2, we do not have a decentralization result:
• Consider matching groups of experts with identical firms
• Problem does not satisfy gross substitutes condition of Kelso

and Crawford (1982) (or Gul and Stacchetti (1999))

• With fractional assignment, easy decentralization result



CIC: Decentralized Market Solution
Failure of Gross Substitutes Condition

• The firm solves:

max
A⊆I

v

(∑
i∈A

xi

)
−
∑
i∈A

w(xi )

• Let D(w) be the set of solutions
• GS: If A∗ ∈ D(w) and w ′ ≥ w , then there is a B∗ ∈ D(w ′)

such that T (A∗) ⊆ B∗, T (A∗) = {i ∈ A∗|w(xi ) = w ′(xi )}.
• The following example shows that GS fails in our model.

• Firm and experts 1, 2, and 3, with x1 = 1, x2 = 2, and x3 = 3
• Assume π = τ = 1
• If w = ((1/12)− ε, 1/12, 1/6), then A∗ = {1, 2}
• Let w = ((1/12)− ε, 1/6, 1/6), so that only the wage of

expert 2 has increased. If ε < 1/30, then B∗ = {3}
• Hence, GS fails since T (A∗) = {1} * B∗

• Same example shows that if the firm were constrained to hire
at most two experts, GS would still fail



CIC: Decentralized Market Solution

• With fractional assignment, given prices wj , firm n solves:

max
µjn

v

∑
j

µjnxj

−∑
j

µjnwj

s.t.
∑
j

µjn = k

• There are J first order conditions for all N firms:

FOCjn : v ′

∑
j

µjnxj

 xj − wj + φn = 0,∀j , n

• Coincides with the planner’s solution

FOCjn : v ′

∑
j

µjnxj

 xj + λj + φn = 0, ∀j , n



Discussion
Modeling Assumptions

• How restrictive is the normal/quadratic-payoff group problem?

• Affords analytical solutions
• Widely used (teams a la Marschak-Radner, global games, etc.)
• Beyond this set up:

• Binary case
• Other canonical model with submodular value function:

probabilistic information arrival
• Stumbling block: Non-concavity in value of information

(Radner-Stiglitz (1984), Chade-Schlee (2002))

• How general are our matching results?
• More general than problem of matching information
• The CIC shows that it holds for any matching problem with V

concave in the sum of types
∑

i xS
i



Discussion
Stochastic Sorting

• Matching information is an example of stochastic sorting
• Type is a family {f (σi |s, xi )}s indexed by xi
• Blackwell informativeness orders the distributions
• ‘Matching distributions’

• Other problems with stochastic sorting

• Becker (1973) with uncertainty: f (σi |xi ), v(~σ)
• f (σi |·) ordered by FOSD
• f (σi |·) ordered by MPS
• Results for this case

• Legros-Newman (2007) with NTU and uncertainty
• Risk sharing problems with FOSD and MPS
• Examples and some results



Concluding Remarks

• Competition ⇒ diversification of information within firm
• Marschak-Radner: recognize individuals have different,

decentralized information
• Matching: want to choose agents with different precision

• Interpret maximum within group spread as:

1. Information diversification: driven by the market forces
2. Endogenous formation of hierarchies: each firm endogenously

generates a hierarchy in precision

• Extensions:

1. Algorithms
2. Allowing for different group sizes

• ρ = 0, six agents, 2, 2, 7, 7, 8, 10
• If k = 3, then {2, 7, 10}, {2, 7, 8}, with X1 = 19 and X2 = 17
• If different sizes allowed, then {2, 2, 7, 7}, {8, 10}, with

X1 = X2 = 18, a strict improvement
• Not an issue with fractional assignment

3. Non transferable utility
4. Decentralization without gross substitutes


