Assortative Matching with Large Firms

Jan Eeckhout¹ and Philipp Kircher²

¹UCL and UPF ²EUI

LACEA, Medellín

November 10, 2016

MOTIVATION

- Two cornerstones of analyzing firms in Macro, Labor, IO, Trade,...
 - 1. Firm size: productive firms are larger and produce more
 - 2. Sorting of workers: firms compete for skilled workers
- These two aspects are usually treated independently
 - 1. Firm Size (Lucas 1978, Hopenhayn 1992) \rightarrow intensive margin
 - 2. Matching: one-to-one (e.g. Becker 1973) \rightarrow extensive margin
- Needed: Trade-off better workers vs. more workers

MOTIVATION

- Two cornerstones of analyzing firms in Macro, Labor, IO, Trade,...
 - 1. Firm size: productive firms are larger and produce more
 - 2. Sorting of workers: firms compete for skilled workers
- These two aspects are usually treated independently
 - 1. Firm Size (Lucas 1978, Hopenhayn 1992) → intensive margin
 - 2. Matching: one-to-one (e.g. Becker 1973) \rightarrow extensive margin
- Needed: Trade-off better workers vs. more workers

→ Apply theory to technological change: SBTC vs. QBTC

Intensive and Extensive Margin

- Population
 - Workers of type $x \in X = [\underline{x}, \overline{x}]$, distribution $H^w(x)$
 - Firms of types $y \in Y = [y, \overline{y}]$, distribution $H^f(y)$
- Production of firm y $F(x, y, l_x, r_x)$
 - I_x workers of type x, r_x fraction of firm's resources
 - F increasing in all, concave in last two arguments
 - F constant returns to scale in last two arguments
 - → Denote:

$$f(x, y, \theta) = rF\left(x, y, \frac{1}{r}, 1\right)$$
, where $\theta = \frac{1}{r}$

Intensive and Extensive Margin

- Population
 - Workers of type $x \in X = [\underline{x}, \overline{x}]$, distribution $H^w(x)$
 - Firms of types $y \in Y = [\underline{y}, \overline{y}]$, distribution $H^f(y)$
- Production of firm y $F(x, y, l_x, r_x)$
 - I_x workers of type x, r_x fraction of firm's resources
 - F increasing in all, concave in last two arguments
 - F constant returns to scale in last two arguments
 - → Denote:

$$f(x, y, \theta) = rF\left(x, y, \frac{1}{r}, 1\right)$$
, where $\theta = \frac{1}{r}$

- Key assumption: no peer effects ⇒ satisfies GS
- \Rightarrow Total output: $\int F(x, y, l_x, r_x) dx$

INTENSIVE AND EXTENSIVE MARGIN

- Population
 - Workers of type $x \in X = [\underline{x}, \overline{x}]$, distribution $H^w(x)$
 - Firms of types $y \in Y = [\underline{y}, \overline{y}]$, distribution $H^f(y)$
- Production of firm $y F(x, y, l_x, r_x)$
 - I_x workers of type x, r_x fraction of firm's resources
 - F increasing in all, concave in last two arguments
 - F constant returns to scale in last two arguments
 - ⇒ Denote:

$$f(x, y, \theta) = rF\left(x, y, \frac{1}{r}, 1\right)$$
, where $\theta = \frac{1}{r}$

- Key assumption: no peer effects ⇒ satisfies GS
- \Rightarrow Total output: $\int F(x, y, l_x, r_x) dx$
- Preferences
 - transferable utility (additive in output goods and numeraire)

EQUILIBRIUM

Hedonic wage schedule w(x) taken as given.

- Optimization:
 - Firms maximize: $\max_{l_x,r_x} \int [F(x,y,l_x,r_x) w(x)l_x] dx$

$$\Rightarrow$$
 $r_x > 0$ only if $\left(x, \frac{l_x}{r_x}\right) = \arg\max f(x, y, \theta) - \theta w(x)$ (*)

• Feasible Resource Allocation (market clearing) under PAM:

$$\int_{x}^{\overline{x}}h_{w}(s)ds=\int_{\mu(x)}^{\overline{y}} heta(s)h_{f}(s)ds$$

Competitive Equilibrium: optimality + market clearing

Assortative Matching

PROPOSITION (CONDITION FOR PAM)

A necessary condition to have equilibria with PAM is that

$$F_{xy}F_{lr} \geq F_{yl}F_{xr}$$

holds along the equilibrium path. The reverse inequality entails NAM.

Assortative Matching

$$F_{xy}F_{lr} \geq F_{yl}F_{xr}$$

- Interpretation ($F_{lr} > 0$ by assumption):
 - 1. $F_{xy} > 0$: bet. manag. produce more w/ bet. workers (Becker)
 - 2. $F_{vl} > 0$: bet. manag., larger span of control (as in Lucas)
 - 3. $F_{xr} > 0$: bet. workers produce more w/ manag. time

Assortative Matching

$$F_{xy}F_{lr} \geq F_{yl}F_{xr}$$

- Interpretation ($F_{lr} > 0$ by assumption):
 - 1. $F_{xy} > 0$: bet. manag. produce more w/ bet. workers (Becker)
 - 2. $F_{vl} > 0$: bet. manag., larger span of control (as in Lucas)
 - 3. $F_{xr} > 0$: bet. workers produce more w/ manag. time
- Quantity-quality trade-off by firm y with resources r:
 - 1. F_{xy} : better manager manages quality workers better vs.
 - 2. F_{vl} : better managers can manage more people
 - ⇒ Marginal increase of better ≥ marginal impact of more workers

SKETCH OF PROOF OF PAM-CONDITION

Assume PAM allocation with resources on $(x, \mu(x), \theta(x))$. Must be optimal, i.e., maximizes:

$$\max_{x,\theta} f(x,\mu(x),\theta) - \theta w(x).$$

First order conditions:

$$f_{\theta}(x, \mu(x), \theta(x)) - w(x) = 0$$

$$f_{x}(x, \mu(x), \theta(x)) - \theta(x)w'(x) = 0$$

The Hessian is

$$Hess = \begin{pmatrix} f_{\theta\theta} & f_{x\theta} - w'(x) \\ f_{y\theta} - w'(x) & f_{yy} - \theta w''(x) \end{pmatrix}.$$

Second order condition requires $|Hess| \ge 0$:

$$f_{\theta\theta}[f_{xx} - \theta w''(x)] - (f_{x\theta} - w'(x))^2 > 0$$

Differentiate FOC's with respect to x, substitute:

$$-\mu'(x)[f_{\theta\theta}f_{xy}-f_{y\theta}f_{x\theta}+f_{y\theta}f_{x}/\theta] > 0$$

Positive sorting means $\mu'(x) > 0$, requiring $[\cdot] < 0$ and after rearranging:

$$F_{xy}F_{lr} \geq F_{yl}F_{xr}$$

Efficiency Units of Labor

• Skill "=" Quantity: $F(x, y, l, r) = \tilde{F}(y, xl, r)$ \Rightarrow $F_{xy}F_{lr} = F_{yl}F_{xr}$

Efficiency Units of Labor

• Skill "=" Quantity: $F(x, y, l, r) = \tilde{F}(y, xl, r)$ \Rightarrow $F_{xy}F_{lr} = F_{yl}F_{xr}$

Multiplicative Separability

- F(x, y, l, r) = A(x, y)B(l, r) sorting if $\frac{AA_{xy}}{A_xA_y} \frac{BB_{lr}}{B_lB_r} \ge 1$
- If B is CES with elast. of substitution ϵ : $\frac{AA_{xy}}{A_XA_y} \ge \epsilon$ (root-sm)

Efficiency Units of Labor

• Skill "=" Quantity: $F(x, y, l, r) = \tilde{F}(y, xl, r)$ \Rightarrow $F_{xy}F_{lr} = F_{yl}F_{xr}$

Multiplicative Separability

- F(x, y, l, r) = A(x, y)B(l, r) sorting if $\frac{AA_{xy}}{A_xA_y} \frac{BB_{lr}}{B_lB_r} \ge 1$
- If B is CES with elast. of substitution ϵ : $\frac{AA_{xy}}{A_xA_y} \ge \epsilon$ (root-sm)

Becker's one-on-one matching

- $F(x, y, \min\{l, r\}, \min\{r, l\}) = F(x, y, 1, 1) \min\{l, r\},$
- Like inelastic CES ($\epsilon \to 0$), so sorting if $F_{12} \ge 0$

Efficiency Units of Labor

• Skill "=" Quantity: $F(x, y, l, r) = \tilde{F}(y, xl, r)$ \Rightarrow $F_{xy}F_{lr} = F_{yl}F_{xr}$

Multiplicative Separability

- F(x, y, l, r) = A(x, y)B(l, r) sorting if $\frac{AA_{xy}}{A_xA_y}\frac{BB_{lr}}{B_lB_r} \ge 1$
- If B is CES with elast. of substitution ϵ : $\frac{AA_{xy}}{A_xA_y} \ge \epsilon$ (root-sm)

Becker's one-on-one matching

- $F(x, y, \min\{l, r\}, \min\{r, l\}) = F(x, y, 1, 1) \min\{l, r\},$
- Like inelastic CES ($\epsilon \to 0$), so sorting if $F_{12} \ge 0$

Sattinger's span of control model

- $F(x, y, l, r) = \min \left\{ \frac{r}{t(x, y)}, l \right\}$; write as CES between both arguments
- Our condition converges for inelastic case to log-supermod. in qualities

Efficiency Units of Labor

• Skill "=" Quantity: $F(x, y, l, r) = \tilde{F}(y, xl, r)$ \Rightarrow $F_{xy}F_{lr} = F_{yl}F_{xr}$

Multiplicative Separability

- F(x, y, l, r) = A(x, y)B(l, r) sorting if $\frac{AA_{xy}}{A_xA_y}\frac{BB_{lr}}{B_lB_r} \ge 1$
- If B is CES with elast. of substitution ϵ : $\frac{AA_{xy}}{A_xA_y} \ge \epsilon$ (root-sm)

Becker's one-on-one matching

- $F(x, y, \min\{l, r\}, \min\{r, l\}) = F(x, y, 1, 1) \min\{l, r\},$
- Like inelastic CES ($\epsilon \to 0$), so sorting if $F_{12} \ge 0$

Sattinger's span of control model

- $F(x, y, l, r) = \min \left\{ \frac{r}{t(x, y)}, l \right\}$; write as CES between both arguments
- Our condition converges for inelastic case to log-supermod. in qualities

Extension of Lucas' span of control model

• F(x, y, l, r) = yg(x, l/r)r, sorting only if good types work less well together $(-g_1g_{22} \ge -g_2g_{12})$.

Efficiency Units of Labor

• Skill "=" Quantity: $F(x, y, l, r) = \tilde{F}(y, xl, r)$ \Rightarrow $F_{xy}F_{lr} = F_{yl}F_{xr}$

Multiplicative Separability

- F(x, y, l, r) = A(x, y)B(l, r) sorting if $\frac{AA_{xy}}{A_xA_y} \frac{BB_{lr}}{B_lB_r} \ge 1$
- If B is CES with elast. of substitution ϵ : $\frac{AA_{xy}}{A_{x}A_{y}} \ge \epsilon$ (root-sm)

Becker's one-on-one matching

- $F(x, y, \min\{l, r\}, \min\{r, l\}) = F(x, y, 1, 1) \min\{l, r\},$
- Like inelastic CES ($\epsilon \to 0$), so sorting if $F_{12} \ge 0$

Sattinger's span of control model

- $F(x, y, l, r) = \min \left\{ \frac{r}{t(x, y)}, l \right\}$; write as CES between both arguments
- Our condition converges for inelastic case to log-supermod. in qualities

Extension of Lucas' span of control model

• F(x, y, l, r) = yg(x, l/r)r, sorting only if good types work less well together $(-g_1g_{22} \ge -g_2g_{12})$.

Spacial sorting in mono-centric city:

• $F(x, y, l, r) = l(xg(y) + v(r/l)) \Rightarrow$ higher earners in center.

FIRM SIZE, ASSIGNMENT, WAGES

Proposition

Under assortative matching (symmetric distributions of x, y)

PAM :
$$\theta'(x) = \frac{F_{yl} - F_{xr}}{F_{lr}}; \quad \mu'(x) = \frac{1}{\theta(x)}; \quad w'(x) = \frac{F_{x}}{\theta(x)},$$

$$\textit{NAM} \quad : \quad \quad \theta'(x) = -\frac{F_{yl} + F_{xr}}{F_{lr}}; \quad \mu'(x) = \frac{-1}{\theta(x)}; \quad w'(x) = \frac{F_x}{\theta(x)},$$

FIRM SIZE, ASSIGNMENT, WAGES

PROPOSITION

Under assortative matching (symmetric distributions of x, y)

$$PAM \quad : \quad \quad \theta'(x) = \frac{F_{yl} - F_{xr}}{F_{lr}}; \quad \mu'(x) = \frac{1}{\theta(x)}; \quad w'(x) = \frac{F_x}{\theta(x)},$$

$$\textit{NAM} \quad : \qquad \theta'(x) = -\frac{F_{yl} + F_{xr}}{F_{lr}}; \quad \mu'(x) = \frac{-1}{\theta(x)}; \quad w'(x) = \frac{F_x}{\theta(x)},$$

COROLLARY

Under assortative matching, better firms hire more workers if and only if along the equilibrium path

$$F_{yl} > F_{xr}$$
 under PAM, and $-F_{yl} < F_{xr}$ under NAM.

APPLICATION: SBTC vs. QBTC

- How has technology changed: $1996 \rightarrow 2010$?
- Estimate technological parameters that affect size and sorting

$$F(x,y,I,1) = \left(\omega_x x^{\frac{\sigma-1}{\sigma}} + \omega_y y^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}} I^{\omega_I}.$$

- Distribution of types x and y assumed log-normal
- Estimate parameters $\omega_x, \omega_y, \omega_l, \sigma$ with parameters of type distributions to match 3 moment conditions:
 - 1. size-wage
 - 2. size-profits
 - 3. size distribution
- German administrative data for matched employer-employees

RESULTS TARGETED MOMENTS 1996

Wages-firm size - Profits-firm size - Firm size distribution

RESULTS TARGETED MOMENTS 2010

Wages-firm size - Profits-firm size - Firm size distribution

ESTIMATED PARAMETERS

$$F(x,y,l,1) = \left(\omega_x x^{\frac{\sigma-1}{\sigma}} + \omega_y y^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}} I^{\omega_l}$$

	1996	2010	% change
Technology			
ω_{x}	0.026	0.060	131.6%
ω_{y}	0.974	0.964	-1.1%
ω_I	0.123	0.217	76.1%
σ	0.998	0.982	-1.6%
Distributions			
X	$\mathcal{LN}(2.49, 1.35)$	$\mathcal{LN}(2.69, 1.35)$	
y	$\mathcal{LN}(0.08, 1.57)$	$\mathcal{LN}(0.03, 1.54)$	

RESULTS ESTIMATED PARAMETERS

The Distributions of Worker Types x and Firm Types y.

ESTIMATED PARAMETERS

$$F(x,y,l,1) = \left(\omega_x x^{\frac{\sigma-1}{\sigma}} + \omega_y y^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}} I^{\omega_l}$$

	1996	2010	% change
Technology			
ω_{x}	0.026	0.060	131.6%
ω_{y}	0.974	0.964	-1.1%
ω_I	0.123	0.217	76.1%
σ	0.998	0.982	-1.6%
Distributions			
X	$\mathcal{LN}(2.49, 1.35)$	$\mathcal{LN}(2.69, 1.35)$	
y	$\mathcal{LN}(0.08, 1.57)$	$\mathcal{LN}(0.03, 1.54)$	

RESULTS TECHNOLOGY

- $\sigma < 1 \Rightarrow \mathsf{PAM}$
- $\sigma \approx 1$, technology can be approximated by the Cobb-Douglas

$$F(x, y, I, 1) \approx x^{\omega_x} y^{\omega_y} I^{\omega_I}$$
.

but not $\sigma = 1$: No sorting!

ESTIMATED PARAMETERS

$$F(x,y,l,1) = \left(\omega_x x^{\frac{\sigma-1}{\sigma}} + \omega_y y^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}} I^{\omega_l}$$

	1996	2010	% change
Technology			
ω_{x}	0.026	0.060	131.6%
ω_{y}	0.974	0.964	-1.1%
ω_I	0.123	0.217	76.1%
σ	0.998	0.982	-1.6%
Distributions			
X	$\mathcal{LN}(2.49, 1.35)$	$\mathcal{LN}(2.69, 1.35)$	
y	$\mathcal{LN}(0.08, 1.57)$	$\mathcal{LN}(0.03, 1.54)$	

RESULTS TECHNOLOGICAL CHANGE

- $\omega_x \uparrow 136\%$: Skill-biased Technological Change (SBTC)
- $\omega_I \uparrow 76\%$: Quantity-biased Technological Change (QBTC)
- ω_y unchanged
- $(1-\sigma) \uparrow 14 \times$: Increase in complementarity between x, y

Complementarities

 F_{xy}

 F_{lr}

Complementarities

 F_{yl}

 F_{xr}

FIRM SIZE, ALLOCATION, SKILL PREMIUM

FIRM SIZE, ALLOCATION, SKILL PREMIUM

- 1. There is both SBTC and QBTC
- 2. FOSD in firm size distribution and shift in allocation
- 3. Skill premium ↑, but polarization (Goos-Manning, Autor-Dorn)
- 4. SBTC and QBTC interact
 - SBTC increases skill premium
 - QBTC decreases skill premium (concave production)
 - → Skill premium increase dampened by QBTC

Counterfactuals

1996 ECONOMY WITH ONE 2010 PARAMETER

	Median Firm Size	% change 1996	Average $w'(x)$	% change 1996
1996	11.98		0.019	
2010	12.53	4.60 %	0.027	44.06%
2010 ω _x	14.21	18.66%	0.049	156.90%
$2010~\omega_y$	11.95	-0.21%	0.019	1.90%
$2010 \omega_I$	14.81	23.65%	0.009	-52.04%
2010 σ	12.01	0.24%	0.022	13.68%
2010 Distributions	12.36	3.20%	0.022	13.68%

CONCLUSION

- Assortative matching with large firms: intensive and extensive margin
- A simple condition for sorting; nests many known models
- Equilibrium allocation: system of 3 differential equations
- Application: Technological Change
 - 1. both SBTC and QBTC
 - 2. effect of QBTC on skill premium: negative
 - 3. effect of SBTC on skill premium would have been 4 times larger