How do Assets Affect Worker Productivity?

JAN EECKHOUT¹ ALIREZA SEPAHSALARI²

¹UCL and Barcelona GSE-UPF

²University of Bristol

Nov 23, 2017

Macro Reading group Bristol

QUESTION

The broad purpose of this paper:

- How does the distribution of assets affect job search decisions?
 - 1. Do workers with different assets get different productivity jobs?

QUESTION

The broad purpose of this paper:

- How does the distribution of assets affect job search decisions?
 - 1. Do workers with different assets get different productivity jobs?
 - 2. What is optimal level of government-provided unemployment insurance (UI) as a function of asset ?

MOTIVATION MODEL INGREDIENTS

- Unemployment risk as source of income uncertainty
- Two sources of market incompleteness:
 - 1. Uninsurable Unemployment Risk
 - 2. Job search
- Heterogeneous asset holdings
 - Different job finding behaviour
- How UI affects LM outcome?
 - Literature: Incentive effects, reservation wage, effort
 - This paper: Consumption smoothing and job search behaviour

The Mechanism

The Labor Market as an Insurance Mechanism

- High productivity firms:
 - \uparrow opportunity cost of unfilled job \rightarrow post high wages
- High asset holders:
 - \downarrow marginal utility of consumption \rightarrow more willing to take risk
- Asset holdings of workers + firm heterogeneity:
 - Natural preference complementarity and hence sorting
- Different asset holdings affect job search decision:
 - Asset dependent precautionary job search motive
- UI affects:
 - Consumption smoothing
 - Job search decisions and sorting of workers to firms

Related Literature

- Partial Equilibrium
 - Danforth (1979)
 - Hopenhayn-Nicolini (1992)
 - Shimer-Werning (2007, 2008)
- General Equilibrium
 - Acemoglu-Shimer (1999): homogeneous assets; CARA; focus on firm investment and job creation
 - Golosov-Menzio-Maziero (2011): homogenous agents, private job search decision
- Quantitative
 - Aiyagari (1994)
 - Krusell, Mukoyama, Sahin (2010)
 - ...

Related Literature

- Partial Equilibrium
 - Danforth (1979)
 - Hopenhayn-Nicolini (1992)
 - Shimer-Werning (2007, 2008)
- General Equilibrium
 - Acemoglu-Shimer (1999): homogeneous assets; CARA; focus on firm investment and job creation
 - Golosov-Menzio-Maziero (2011): homogenous agents, private job search decision
- Quantitative
 - Aiyagari (1994)
 - Krusell, Mukoyama, Sahin (2010)
 - ...

 \Rightarrow New: asset distribution, two sided heterogeneity

The Model

Population, preferences and technology

- Time is discrete and agents discount the future at rate β
- There is a continuum of risk averse workers (employed/unemployed) with asset levels a ∈ A = [a, ā] ⊂ ℝ₊
- There is a continuum of risk neutral firms with productivities $y \in \mathcal{Y} = [\underline{y}, \overline{y}] \subset \mathbb{R}_+$
- r is return to saving
- + τ is a proportional tax on wage and UI is tax financed

The Model

Matching:

- Search is Directed
- Firm y: announce w and workers apply for different firms
- Firm-to-worker ratio: θ in each submarket
- Matching prob: $m(\theta)$; m' > 0, m'' < 0; firms $q(\theta) = \theta m(\theta)$
- Separation with exogenous probability $\lambda \in (0,1)$

WORKERS

• Unemployed

$$U(a) = \max_{a',\theta} \left\{ u(c_u) + \beta \left[m(\theta) E(a', w) + (1 - m(\theta)) U(a') \right] \right\}$$

s.t: $c_u + a' = (1 + r)a + b + d$
 $a' \ge \underline{a}$

• Employed

$$E(a, w) = \max_{a'} \left\{ u(c_e) + \beta [\lambda U(a') + (1 - \lambda)E(a', w)] \right\}$$

s.t: $c_e + a' = (1 + r)a + (1 - \tau)w + d$
 $a' \ge \underline{a}$

FIRMS

• The value of posting a vacancy

$$V(y) = -k + \max_{w} \beta[q(\theta)J(y,w) + (1-q(\theta))V(y)]\}$$

• The value of a filled job

$$J(y,w) = f(y) - w + \beta[\lambda V(y) + (1-\lambda)J(y,w)]$$

Equilibrium

DEFINITION

An equilibrium is a pair of market clearing distributions (P(y, w), Q(a, a', y, w)) such that:

- 1. Worker optimality: $(a, a', y, w) \in \text{supp } Q$ only if (y, p) maximizes U(a, a', y, w), E(a, a', y, w);
- 2. Firm optimality: $(y, w) \in \text{supp } P$ only if w maximizes V(y);
 - Monotone matching (positive) $\mu : \mathcal{A} \to \mathcal{Y}$. Market Clearing:

$$\int_{a}^{\overline{a}} \theta(y) f(a) da = \int_{\mu(a)}^{\overline{y}} g(y) dy.$$

SOLUTION

- Substitute J(y, w) into V(y)
- Substitute wage from firm problem into worker problem.
- $\phi(a, y, V)$ is a match surplus.

$$\Phi(a, y, V) = \max_{a', \theta, y} \left\{ u(c_u) + \beta \left[m(\theta) E(a', w) + (1 - m(\theta)) \Phi(a') \right] \right\}$$

Where:

$$\begin{array}{lll} c_{u} &=& (1+r)a+b+d-a'\\ c_{e} &=& (1+r)a+(1-\tau)w+d-a'\\ w &=& f(y)-\frac{1-\beta(1-\lambda)}{q(\theta)}\Big[(1-\beta(1-q(\theta)))V+k\Big] \end{array}$$

SOLUTION

FOCs:

- Consumption smoothing
- Optimal job search
- Optimal allocation
- Supermodularity of Φ:

$$\frac{d^{2}}{dady}\Phi = \Phi_{ay} + \Phi_{Vy}\frac{\partial V}{\partial y} = \Phi_{ay} - \frac{\Phi_{y}}{\Phi_{V}}\Phi_{Va} > 0$$

• Higher a apply to higher $y \iff \Phi$ supermodular.

Assets - Productivity Allocation

PROPOSITION

Workers with higher initial asset levels a will apply for higher wage jobs provided

$$\frac{E_{a'}(a',w) - \Phi_{a'}(a')}{E(a',w) - \Phi(a')} < \frac{E_{a',w}(a',w)}{E_w(a',w)}$$
(**U**_∞)

PROPOSITION

Under condition (\mathbf{U}_{∞}) and for a given worker with assets a, the job productivity y decreases in the duration of unemployment.

Assets – Productivity Allocation

Under condition $oldsymbol{U}_\infty$

- High asset workers $(a \uparrow)$:
 - 1. apply for high productivity jobs $(y \uparrow)$
 - 2. earn higher wages $(w \uparrow)$
 - 3. have higher unemployment $(\theta \downarrow \Rightarrow m(\theta) \downarrow)$
 - 4. have higher expected consumption ($c \uparrow$)
 - 5. have higher expected utility $(U\uparrow)$
- High productivity firms $(y \uparrow)$:
 - 1. post higher wages $(w \uparrow)$
 - 2. attract higher asset workers $(a \uparrow)$
 - 3. have higher expected profits $(\pi \uparrow)$
 - 4. fill vacancies faster $(\theta \downarrow \Rightarrow q(\theta) \uparrow)$

Equilibrium Properties

Under condition \bm{U}_∞

- High asset holders have higher risk tolerance
- High productivity firms want to hire with high probability ⇒ post high wage
- ⇒ Natural preference complementarity between assets and productivity

Equilibrium Properties

Under condition \bm{U}_∞

- High asset holders have higher risk tolerance
- High productivity firms want to hire with high probability ⇒ post high wage
- ⇒ Natural preference complementarity between assets and productivity

But, there is no technological complementarity

CALIBRATION

- One period is set to be 6 weeks.
- $a \in \mathcal{A} = [-100, 300]$ and $y \in \mathcal{Y} = [150, 250]$

•
$$u(c) = log(c), f(y) = y, q(\theta) = \theta(1 + \theta^{\gamma})^{\frac{1}{\gamma}}$$

Parameter	Definition	Value
β	discount factor	0.99
r	interest rate	0.005
Ь	unemployment benefit	80
k	cost of vacancy	50
λ	Probability of Separation	0.03
γ	elasticity of matching fn	1.2

CHARACTERIZATION OF THE STEADY STATE

$$u(\%) = 4.2$$
 $avg(\theta) = 1.11$ $avg(w) = 196.82$

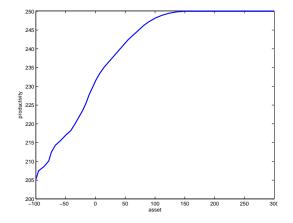


FIGURE: Allocation of firms and workers in labour market

PROBABILITY OF JOB FINDING AND WAGE

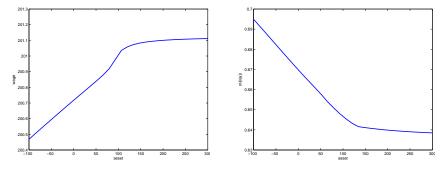
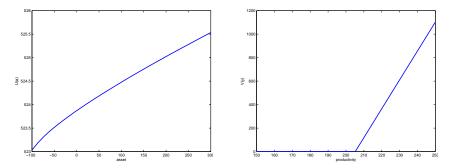
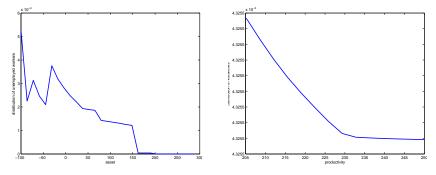



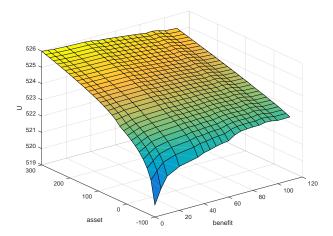
FIGURE: Wages and job finding probabilities by asset

VALUE OF WORKERS AND FIRMS

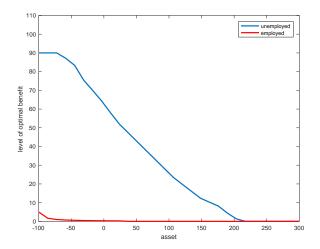
 $\ensuremath{\mathbf{Figure:}}$ The value of unemployment as a function of asset and vacancy as a function of productivity

DISTRIBUTION OF ASSET AND PRODUCTIVITY




FIGURE: Distribution of workers and firms

Equilibrium Effects of UI


Is UI improving the value of unemployment?

- 1. Consumption
- 2. Allocation and probability of job finding
- 3. Firms entry

The Value of Unemployment

Optimal UI and asset holding

CONSUMPTION

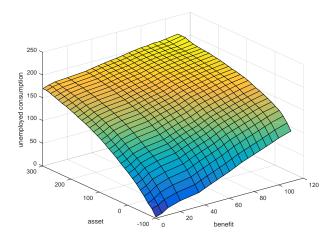
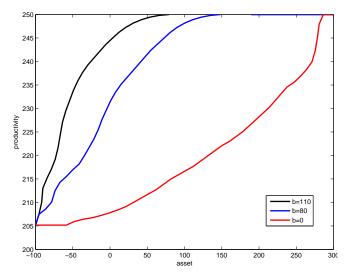
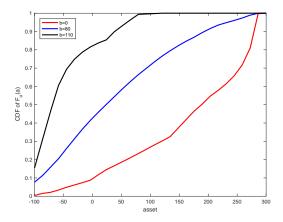
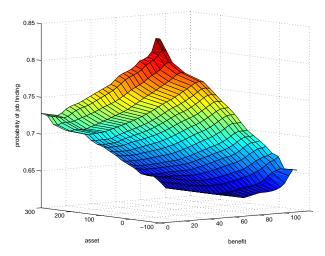



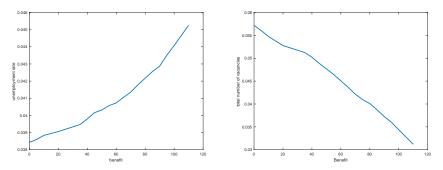
FIGURE: Consumption of unemployed workers

ALLOCATION

FIGURE: Change in allocation of asset holders to firms of different productivities

DISTRIBUTION


FIGURE: CDF of asset distribution unemployed

PROBABILITY OF JOB FINDING

FIGURE: Probability of job finding as a function of asset and unemployment benefit

UNEMPLOYMENT AND FIRMS ENTRY

FIGURE: Unemployment rate and total vacancies as a function of unemployment benefit

COMPARISON

Aiyagari(1994)

- The employment process is exogenously given
- UI and taxes are nondistortionary
- Welfare is monotonically increasing in benefit

Krusell et al(2010)

- Frictional labour market, Nash bargaining, homogenous firms
- Same probability of job finding for all workers

COMPARISON

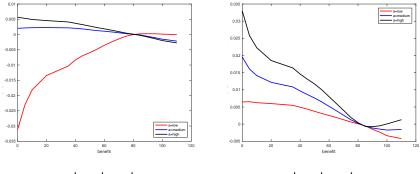
Aiyagari(1994)

- The employment process is exogenously given
- UI and taxes are nondistortionary
- Welfare is monotonically increasing in benefit

Krusell et al(2010)

- Frictional labour market, Nash bargaining, homogenous firms
- Same probability of job finding for all workers

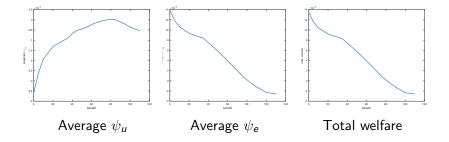
This paper


- \Rightarrow New: asset distribution, two sided heterogeneity
 - Asset dependent precautionary job search motive

IS UI WELFARE IMPROVING?

- Comparing steady states with different levels of UI
- ψ : percentage change in life time consumption required to give workers the steady state average lifetime utility
- Fix the distribution of workers at benchmark economy
- c_t : benchmark, $\hat{c_t}$ counterfactual experiments

$$\mathbb{E}_0 \Big[\sum_{t=0}^{\infty} \beta^t \log((1+\psi)c(a_t)) \Big] = \mathbb{E}_0 \Big[\sum_{t=0}^{\infty} \beta^t \log(\hat{c}(a_t)) \Big]$$


WELFARE

unemployed workers

employed workers

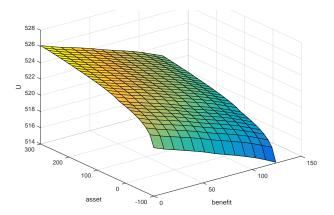
WELFARE

Welfare

	Welfare Gain			Fraction of agents gaining		
<i>b</i> = 80 to	Total (%)	Unemp. (%)	Emp. (%)	Unemp.	Emp.	Total
0	1.35	-0.04	1.39	0.01	1	0.9587
35	0.84	-0.01	0.85	0.56	1	0.9818
45	0.64	-0.01	0.65	0.56	1	0.9811
60	0.43	-0.00	0.43	0.55	1	0.9811
65	0.29	-0.00	0.30	0.60	1	0.9835
75	0.10	0.00	0.09	0.85	1	0.99
80	0	0	0	0	0	0
85	-0.08	-0.00	-0.08	0.12	0	0.0053
95	-0.18	-0.00	-0.18	0.35	0	0.0149

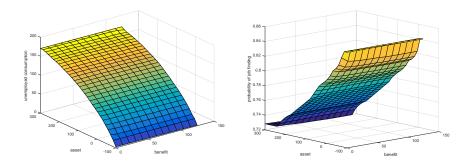
Welfare: Summary

- Individuals have clear individual preferences over benefits:
 - 1. Unemployed high assets types like low benefits
 - 2. Unemployed low assets like high benefits
- But on average from a decrease in the benefits:
 - Employed workers gain
 - Unemployed workers loose
- \Rightarrow With a Utilitarian Planner: low benefits is optimal


optimal UI

SEVERANCE PAY

• S: a lump sum payment upon separation.


$$E(a, y, w) = \max_{a'} \left\{ u(c_e) + \beta [\lambda U(a' + S) + (1 - \lambda)E(a', y, w)] \right\}$$

s.t. $c_e + a' = Ra + (1 - \tau)w + d$ and $a' \ge \underline{a}$

THE VALUE OF UNEMPLOYMENT SEVERANCE PAY

POLICY FUNCTIONS

SEVERANCE PAY

Consumption

Probability of Job Finding

POLICY FUNCTIONS

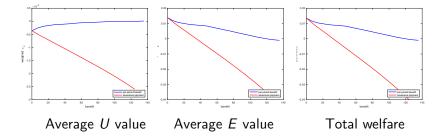

Comparing Per-Period Benefit & Severance Pay

FIGURE: Average consumption and probability of job finding

WELFARE

Comparing Per-Period Benefit & Severance Pay

CONCLUSION

- Two sided heterogeneity: asset holding of workers + firm prod.
- Natural preference complementarity and sorting
- Asset dependent precautionary job search motive
- UI: Consumption, job search decision, asset distribution
 - Individual preferred replacement rate depends on their asset holding
 - Utilitarian Planner: low benefits is optimal

How do Assets Affect Worker Productivity?

JAN EECKHOUT¹ ALIREZA SEPAHSALARI²

¹UCL and Barcelona GSE-UPF

²University of Bristol

Nov 23, 2017

Macro Reading group Bristol Appendix

Assets – Productivity Allocation

PROPOSITION

Workers with higher initial asset levels a will apply for more productive jobs provided

$$\frac{u'(c_e) - u'(Ra')}{u(c_e) - u(Ra')} < \frac{u''(c_e)}{u'(c_e)}$$
(U)

- Within HARA, condition (U) is equivalent to DARA:
 - < CRRA log
 - = CARA risk neutrality
 - > quadratic
- DARA, $\frac{u''}{u'} < 0$ (or positive risk prudence u''' > 0):
 - sufficient for small w

Related empirical literature

- Silvio (AER-2006), Card, Chetty, and Weber (QJE-2007), and Lentz (RED-2009): document that higher asset holdings lead to prolonged job search
- Chetty (JPE-2008) shows that the elasticity of the job finding rate with respect to unemployment benefits decreases with liquid wealth
- Browning and Crossley (JPE-2001) show that unemployment insurance improves consumption smoothing for poor agents, but not for rich ones