Economics and the City

Jan Eeckhout[†]

[†]Barcelona GSE-UPF

Bojos per l'Economia 31 January, 2015

Labor markets

Local Labor markets

Local Labor markets

Local Labor markets

Local Labor markets Zipf's Law

mobility Local Labor markets Gibrat's Law Zipf's Law

wages

mobility Local Labor markets Gibrat's Law Zipf's Law

housing prices wages

mobility Local Labor markets Gibrat's Law Zipf's Law

CITIES

housing prices wages productivity differences mobility Local Labor markets Gibrat's Law Zipf's Law

housing prices wages productivity differences geographical: mountains and waterways Mobility Local Labor markets Gibrat's Law Zipf's Law

housing prices wages agglomeration externalities productivity differences geographical: mountains and waterways mobility Local Labor markets Gibrat's Law Zipf's Law

housing prices Wages Alfred Marshall agglomeration externalities productivity differences geographical: mountains and waterways mobility Local Labor markets Gibrat's Law Zipf's Law

housing prices Wages Urban Wage Premium Alfred Marshall agglomeration externalities geographical: mountains and waterways mobility Local Labor markets Gibrat's Law Zipf's Law

skills Sorting CITIES housing prices wages Urban Wage Premium agglomeration externalities geographical: mountains and waterways mobility Local Labor markets Gibrat's Law Zipf's Law

- A Surprising Regularity and a puzzle
- Economic forces

- A Surprising Regularity and a puzzle
- Economic forces
- 2. Is there Spatial Sorting?

- A Surprising Regularity and a puzzle
- Economic forces
- 2. Is there Spatial Sorting?
 - Who works in big cities?
 - Technological determinants

1. Zipf's and Gibrat's law: where does it come from?

- A Surprising Regularity and a puzzle
- Economic forces
- 2. Is there Spatial Sorting?
 - Who works in big cities?
 - Technological determinants

3. Does Federal Income Taxation affect local labor markets?

- A Surprising Regularity and a puzzle
- Economic forces
- 2. Is there Spatial Sorting?
 - Who works in big cities?
 - Technological determinants
- 3. Does Federal Income Taxation affect local labor markets?
 - Effect on location decisions
 - Optimal taxation policy

INTRODUCTION

- Why are there cities of sizes? Why are there cities?
 - Geographical determinants? Rivers, weather,...
 - Consumer demand: amenities from size? Opera,...
 - Labor markets?
- What are the technological determinants of productivity across different size cities?

INTRODUCTION

- Why are there cities of sizes? Why are there cities?
 - Geographical determinants? Rivers, weather,...
 - Consumer demand: amenities from size? Opera,...
 - Labor markets?
- What are the technological determinants of productivity across different size cities?
- Address two puzzles + policy implications:
 - 1. Proportionate growth and Zipf's law
 - 2. Urban Wage Premium
 - 3. Taxation
- Exploit the relation: wages population housing prices

OUTLINE

- $\rm I~$ Zipf's and Gibrat's law
- **II** Spatial Sorting
- **III** Taxation

I. POPULATION AND LABOR MARKET DYNAMICS

ZIPF'S LAW

FIGURE I Log Size versus Log Rank of the 135 largest U. S. Metropolitan Areas in 1991 Source: Statistical Abstract of the United States [1993].

(1)
$$\ln \text{Rank} = 10.53 - 1.005 \ln \text{Size}$$

(.010)

• The largest city is N times larger than the N-th city

$$S \approx rac{e^a}{Rank}$$
 (a = 10.53)

- First observed by Zipf (1949)
- Early systematic pattern: Le Maître (1648), Auerbach (1913)
- Robust across time and space

• The largest city is N times larger than the N-th city

$$S \approx rac{e^a}{Rank}$$
 (a = 10.53)

- First observed by Zipf (1949)
- Early systematic pattern: Le Maître (1648), Auerbach (1913)
- Robust across time and space
- Remarkably systematic relationship
- ⇒ Krugman (1995): "We have to say that the rank-size rule is a major embarrassment for economic theory: one of the strongest statistical relationships we know, lacking any clear basis in theory."

TABLE 2-TEN LARGEST METROPOLITAN AREAS IN THE UNITED STATES

Rank	MA	Population S	S_{NY}/S
1	New York-Northern New Jersey-Long Island, NY-NJ-CT-PA	21,199,865	1.000
2	Los Angeles-Riverside-Orange County, CA	16,373,645	1.295
3	Chicago-Gary-Kenosha, IL-IN-WI	9,157,540	2.315
4	Washington-Baltimore, DC-MD-VA-WV	7,608,070	2.787
5	San Francisco-Oakland-San Jose, CA	7,039,362	3.012
6	Philadelphia-Wilmington-Atlantic City, PA-NJ-DE-MD	6,188,463	3.426
7	Boston-Worcester-Lawrence, MA-NH-ME-CT	5,819,100	3.643
8	Detroit-Ann Arbor-Flint, MI	5,456,428	3.885
9	Dallas-Fort Worth, TX	5,221,801	4.060
10	Houston-Galveston-Brazoria, TX	4,669,571	4.540

Note: S_{NY}/S denotes the ratio of population size relative to New York. *Source:* Census Bureau, 2000.

Two open questions:

- 1. Why Pareto distribution?
 - Pareto vs. other distributions?
 - Why so robust?
- 2. What are the economic forces behind this?

- Zipf's law: size distribution is Pareto with scale coefficient 1
- Pareto distribution ($\forall S \geq \underline{S}$):

$$p(S) = \frac{a\underline{S}^{a}}{S^{a+1}}$$
$$P(S) = 1 - \left(\frac{\underline{S}}{\overline{S}}\right)^{a}$$

• If we denote rank by *r*, then (where <u>N</u> is # cities above cutoff):

$$r = \underline{N}(1 - P(S)) = \underline{N}\left(\frac{\underline{S}}{\underline{S}}\right)^{a}$$

and therefore

$$\ln r = K - a \ln S$$

(where $K = \ln \underline{N} + a \ln \underline{S}$).

PARETO DISTRIBUTION

A Second Regularity

- Cities grow at different rates
- Growth is stochastic
- But: the average growth rate is independent of size

A SECOND REGULARITY

A Second Regularity

A Second Regularity

A SECOND REGULARITY

PROPORTIONATE GROWTH

Parametric growth regressions:

$$\frac{S_{00}}{S_{90}} = 1.102 - 3.75E(-08)\frac{S_{90} + S_{00}}{2}$$
(0.005) (7E(-08))

$$\frac{S_{00}}{S_{90}} = 1.103 + 2.3E(-09)S_{90}$$

(0.005) (7.3E(-08))

- How can we reconcile
 - 1. Zipf's law, and
 - 2. proportionate growth?

- How can we reconcile
 - 1. Zipf's law, and
 - 2. proportionate growth?
- Reason: Gibrat's Law: proportionate growth
 - \Rightarrow log-normal distribution of city sizes, not Pareto
- Proportionate growth

$$S_{i,t} = (1 + \varepsilon_{i,t})S_{i,t-1}$$

$$\sum_{t=1}^{T} \frac{S_{i,t} - S_{i,t-1}}{S_{i,t-1}} = \sum_{t=1}^{T} \varepsilon_{i,t}$$

$$\sum_{t=1}^{T} \frac{S_{i,t} - S_{i,t-1}}{S_{i,t-1}} \approx \int_{S_{i,0}}^{S_{i,T}} \frac{dS_i}{S_i} = \ln S_{i,t} - \ln S_{i,0}$$

• Between any two periods t:

$$\ln S_{i,t} = \ln S_{i,t-1} + \varepsilon_{i,t}$$

and therefore:

$$\ln S_{i,T} = \ln S_{i,0} + \varepsilon_{i,1} + \cdots + + \varepsilon_{i,T}.$$

- From the central limit theorem, In S_{i,T} is asymptotically normal, and therefore S_{i,T} is asymptotically log-normal (Gibrat 1931)
- \Rightarrow Proportionate growth \Rightarrow lognormal distribution (not Pareto)

RECONCILING EVIDENCE

- Gabaix (1999): a process with entry and exit at high truncation
- The fit of the Pareto tail (Zipf's law) is for 135 cities only
- \Rightarrow Something going on outside tail
- \Rightarrow Need to consider entire distribution, not just the truncation

ZIPF'S LAW FOR (ALL) MSA'S?

PLACES

- By definition, MSA is truncated (at least one city with population > 50,000)
- Use a different definition: incorporated places
 - Largest: five boroughs of NYC
 - But not New Jersey, Connecticut,...
 - Based on the legal definition (mayor,...)
 - Some are extremely small (zero population!)
 - 25,359 places; median size = 1,338
 - Only 73% of population

PLACES

TABLE 1-TEN LARGEST CITIES IN THE UNITED STATES

Rank	City	Population S	S_{NY}/S
1	New York, NY	8,008,278	1.000
2	Los Angeles, CA	3,694,820	2.167
3	Chicago, IL	2,896,016	2.753
4	Houston, TX	1,953,631	4.099
5	Philadelphia, PA	1,517,550	5.277
6	Phoenix, AZ	1,321,045	6.062
7	San Diego, CA	1,223,400	6.546
8	Dallas, TX	1,188,580	6.738
9	San Antonio, TX	1,144,646	6.996
10	Detroit, MI	951,270	8.419

Note: S_{NY}/S denotes the ratio of population size relative to New York.

Source: Census Bureau, 2000.

EVIDENCE All Cities

All Cities

PLACES

EVIDENCE All Cities

Truncation point]		
Ņ	S	City	\hat{K} (s.e.)	â (s.e.) (GI s.e.)	R^2
135	155,554	Chattanooga (city), TN	21.099 (0.144)	1.354 (0.011) (0.165)	0.99
2,000	19,383	Lyndhurst (CDP), NJ	20.648 (0.017)	1.314 (0.002) (0.042)	0.997
5,000	6,592	Attalla (city), AL	18.588 (0.019)	1.125 (0.002) (0.023)	0.985
12,500	1,378	Fullerton (city), NE	15.944 (0.014)	0.863	0.961
25,000	42	Paoli (town), CO	13.029 (0.010)	0.534 (0.001) (0.005)	0.860

Notes: Dependent variable: Rank (ln). s.e. standard error; GI s.e. Gabaix-Ioannides (2003) corrected standard error $(\hat{a}(2/N)^{1/2})$. *Source:* Census Bureau, 2000.

FROM POPULATION TO ECONOMICS

- What drives population mobility?
 - 1. Geography: rivers, coasts, mountains, weather
 - 2. Amenities: Opera, externalities (+/-, (non-)pecuniary), ...
 - 3. Productivity Changes
- Citizen mobility in response to changes in prices: wages, housing prices, consumption prices,...
- Prices are determined in equilibrium
- $\rightarrow\,$ A general equilibrium theory of production across locations
- ... Objective: understand economic mechanisms (technology, preferences,...) from observing the population dynamics

FROM POPULATION TO ECONOMICS

- Local TFP $A_{i,t}$; law of motion: $A_{i,t} = A_{i,t-1}(1 + \sigma_{i,t})$ where $\sigma_{i,t}$ is zero mean i.i.d.
- Local externalities:
 - positive in production $a_+(S_{i,t})$ $(a'_+(S_{i,t}) > 0)$
 - negative (commuting) $a_{-}(S_{i,t})$ $(a'_{-}(S_{i,t}) < 0)$
- Identical firms in a competitive local labor market produce $y_{i,t} = A_{i,t}a_+(S_{i,t}) \Rightarrow$ wage is equal to marginal product
- Stock of land in each city is *H*; unit price of land is *p_{i,t}* and individual consumption is *h_{i,t}*
- Preferences: $u(c, h, l) = c^{\alpha} h^{\beta} (1 l)^{1 \alpha \beta}$
- Perfect mobility across cities (no moving cost)

PROPOSITION

Under general conditions, city size satisfies Gibrat's law: population growth is proportionate and the asymptotic size distribution is lognormal.

WHAT IS A CITY? Àrea Metropolitana de Barcelona

MSA, Place, County,...

COUNTIES

Rank	City	Population S	S_{LA}/S
1	Los Angeles County, CA	9,519,338	1.000
2	Cook County, IL	5,376,741	1.770
3	Harris County, TX	3,400,578	2.799
4	Maricopa County, AZ	3,072,149	3.099
5	Orange County, CA	2,846,289	3.344
6	San Diego County, CA	2,813,833	3.383
7	Kings County, NY	2,465,326	3.861
8	Miami-Dade County, FL	2,253,362	4.225
9	Queens County, NY	2,229,379	4.269
10	Dallas County, TX	2,218,899	4.290
10	Dallas County, TX	2,218,899	4.29

Note: S_{LA}/S denotes the ratio of population size relative to Los Angeles.

Source: Census Bureau, 2000.

WHAT IS A CITY? Counties

CONSTRUCTING CITIES

Holmes and Lee: a unit consists of a 6×6 miles area

Fig. 3.1 Map of grid lines for six-by-six squares in the vicinity of New York City

OUTLINE

- ${\bf I}~$ Zipf's and Gibrat's law
- **II** Spatial Sorting
- ${\color{blue}\hbox{III}}$ Taxation

Spatial Sorting

- The elasticity of average wage with respect to city size is 4.2%
- Big differences:

	Population	Wage	Wage Ratio
New York	19 million	897	1.22
Janesville, WI	160,000	735	1.00

- The elasticity of average wage with respect to city size is 4.2%
- Big differences:

	Population	Wage	Wage Ratio
New York	19 million	897	1.22
Janesville, WI	160,000	735	1.00

- \Rightarrow Explanations?
 - 1. Amenities
 - 2. Cost of Living
 - 3. Sorting

- The elasticity of average wage with respect to city size is 4.2%
- Big differences:

	Population	Wage	Wage Ratio
New York	19 million	897	1.22
Janesville, WI	160,000	735	1.00

- \Rightarrow Explanations?
 - 1. Amenities
 - 2. Cost of Living
 - 3. Sorting

SORTING IN TEAMS

PRODUCTION AND COMPLEMENTARITIES

SORTING IN TEAMS PRODUCTION AND COMPLEMENTARITIES

SORTING IN TEAMS PRODUCTION AND COMPLEMENTARITIES

SORTING IN TEAMS PRODUCTION AND COMPLEMENTARITIES

CITY AS A TEAM

CITY AS A TEAM

CITY AS A TEAM Spatial Sorting

The model

- J locations (cities) $j \in \mathcal{J} = \{1, ..., J\}$
- Fixed amount of land (housing) H_j

CITIZENS

- Citizens (workers) with heterogenous skills x_i
- Preferences over consumption and housing (price *p*):

$$u(c,h)=c^{1-\alpha}h^{\alpha}$$

• Worker mobility \Rightarrow utility equalization across cities:

$$u(c_{ij}, h_{ij}) = u(c_{ij'}, h_{ij'}), \quad \forall j' \neq j$$

TECHNOLOGY

- Cities differ exogenously in TFP A_j
- Representative firm in city *j* produces

 $A_j F(m_{1j},...,m_{lj})$

 m_{ij} : employment level of skill *i*; given wages w_{ij}

TECHNOLOGY: NESTED CES

3 skill types \Rightarrow 5 configurations

0. Benchmark CES:

$$A_{j}F = A_{j}\left(m_{1j}^{\gamma}y_{1} + m_{2j}^{\gamma}y_{2} + m_{3j}^{\gamma}y_{3}\right)^{\beta} \gamma \in [0, 1], \beta > 0$$

TECHNOLOGY: NESTED CES

3 skill types \Rightarrow 5 configurations

0. Benchmark CES:

$$A_{j}F = A_{j}\left(m_{1j}^{\gamma}y_{1} + m_{2j}^{\gamma}y_{2} + m_{3j}^{\gamma}y_{3}\right)^{\beta} \ \gamma \in [0, 1], \beta > 0$$

1. Extreme-Skill Complementarity

$$A_{j}F = A_{j}\left[m_{2j}^{\gamma}y_{2} + (m_{1j}^{\gamma}y_{1} + m_{3j}^{\gamma}y_{3})^{\lambda}\right]^{\beta}$$

A. $\lambda > 1$: skills 1 and 3 are (relative) complements; B. $\lambda < 1$: skills 1 and 3 are (relative) substitutes; C. $\lambda = 1$: CES

TECHNOLOGY: NESTED CES

3 skill types \Rightarrow 5 configurations

0. Benchmark CES:

$$A_{j}F = A_{j}\left(m_{1j}^{\gamma}y_{1} + m_{2j}^{\gamma}y_{2} + m_{3j}^{\gamma}y_{3}\right)^{\beta} \ \gamma \in [0, 1], \beta > 0$$

1. Extreme-Skill Complementarity

$$A_{j}F = A_{j}\left[m_{2j}^{\gamma}y_{2} + (m_{1j}^{\gamma}y_{1} + m_{3j}^{\gamma}y_{3})^{\lambda}\right]^{\beta}$$

- A. $\lambda > 1$: skills 1 and 3 are (relative) complements; B. $\lambda < 1$: skills 1 and 3 are (relative) substitutes; C. $\lambda = 1$: CES
- 2. Top-Skill Complementarity

$$A_{j}F = A_{j}\left[m_{1j}^{\gamma}y_{1} + (m_{2j}^{\gamma}y_{2} + m_{3j}^{\gamma}y_{3})^{\lambda}\right]^{\beta}$$

MARKET CLEARING

- Housing market: $\sum_{i=1}^{I} h_{ij} m_{ij} = H_j$
- Labour market: $\sum_{j=1}^{J} m_{ij} = M_i$ (M_i : total # of skill i)
- City population: $S_j = \sum_{i=1}^{l} m_{ij}$
- Two types of cities, C₁, C₂ of each type

CITIZEN'S PROBLEM

• Optimal consumption

$$m{c}_{ij}^{\star} = (1-lpha) m{w}_{ij}$$
 and $m{h}_{ij}^{\star} = lpha rac{m{w}_{ij}}{m{p}_i}$

• Indirect utility function

$$U_{i} = \alpha^{\alpha} \left(1 - \alpha\right)^{1 - \alpha} \frac{w_{ij}}{p_{j}^{\alpha}}$$

 \Rightarrow From mobility, utility equalization:

$$\frac{w_{i1}}{p_1^{\alpha}} = \frac{w_{i2}}{p_2^{\alpha}}$$

Theorem 1. City Size and TFP

The more productive city is larger, $S_1>S_2$

Theorem 1. City Size and TFP

The more productive city is larger, $S_1>S_2$

Theorem 2. Extreme-Skill Complementarity and Thick Tails The skill distribution in the larger city has thicker tails

Theorem 1. City Size and TFP

The more productive city is larger, $S_1>S_2$

Theorem 2. Extreme-Skill Complementarity and Thick Tails The skill distribution in the larger city has thicker tails

Theorem 3. Top-Skill Complementarity and FOSD The skill distribution in the larger city first-order stoch. dominates

Mechanism: skill complementarity also in small cities, but demand for extreme skills is higher in big cities due to TFP (A_j)

Mechanism: skill complementarity also in small cities, but demand for extreme skills is higher in big cities due to TFP (A_j)

Corollary 1. CES technology If $\lambda = 1$, then the skill distribution across cities is identical

Corollary 2. Extreme-Skill Substitutability and Thin Tails The skill distribution in the larger city has thinner tails

5 Technologies \rightarrow 5 distributions

- 1. Extreme-Skill Complementarity \Rightarrow thick tails
- 2. Extreme-Skill Substitutability \Rightarrow thin tails
- 3. Top-Skill Complementarity \Rightarrow FOSD of big cities
- 4. Top-Skill Substitutability \Rightarrow FOSD of small cities
- 5. Constant Elasticity (CES) \Rightarrow identical distributions

Empirical evidence

EMPIRICAL EVIDENCE

• Use theory to obtain a measure for skills

$$U_{i} = \alpha^{\alpha} \left(1 - \alpha\right)^{1 - \alpha} \frac{w_{ij}}{p_{j}^{\alpha}}$$

- Need to observe:
 - wage distribution w_{ij} by city
 - housing price level pj
 - budget share of housing α $\hat{\alpha} = 0.24$ from Davis and Ortalo-Magné (RED 2010)

WAGES CPS 2009

HOUSING PRICES

- American Community Survey (ACS) 2009
- Rental prices (robust: sales)
- Hedonic price schedule: to obtain housing price index
- \Rightarrow Skill measure: $\frac{w_i}{p_i^{\alpha}}$

SKILLS AND CITY SIZE SKILL MEASURE: $\frac{W_i}{\rho^{c_i}}$

Skills and city size

- 1. Constant mean: housing cost increases 4 \times faster than wages $\Rightarrow 1.169^{0.24} = 1.038 \approx 1.042$
- 2. Variance increases in city size
- ... Urban Wage Premium: not spatial sorting, but housing prices

Skills and City size

- 1. Constant mean: housing cost increases 4 \times faster than wages $\Rightarrow 1.169^{0.24} = 1.038 \approx 1.042$
- 2. Variance increases in city size
- ... Urban Wage Premium: not spatial sorting, but housing prices
- \therefore Skill distribution thick tails \rightarrow extreme-skill complementarity

$$A_{j}F = A_{j}\left[m_{2j}^{\gamma}y_{2} + (m_{1j}^{\gamma}y_{1} + m_{3j}^{\gamma}y_{3})^{\lambda}\right]^{\beta}, \ \lambda > 1$$

Skills and city size

- 1. Constant mean: housing cost increases 4 \times faster than wages $\Rightarrow 1.169^{0.24} = 1.038 \approx 1.042$
- 2. Variance increases in city size
- \therefore Urban Wage Premium: not spatial sorting, but housing prices
- \therefore Skill distribution thick tails \rightarrow extreme-skill complementarity

$$A_{j}F = A_{j}\left[m_{2j}^{\gamma}y_{2} + (m_{1j}^{\gamma}y_{1} + m_{3j}^{\gamma}y_{3})^{\lambda}\right]^{\beta}, \ \lambda > 1$$

 \rightarrow high skilled workers need low-skilled services for production

- administrative/sales help
- household help and child care
- food services, restaurants,...

ROBUSTNESS: OBSERVABLES

- Our measure of skills: price based (wages and housing price)
- Includes everything: observables and unobservables
- 2/3 of wages: unobservables (non-cognitive skills,...)
- \rightarrow Thick tails also for observables?

EDUCATION: A DIRECT MEASURE OF SKILL

OCCUPATION

10th percentile: pop < 1m = -0.55, pop > 2.5m = -0.59, diff = -0.042^{***} (0.006) 90th percentile: pop < 1m = 0.56, pop > 2.5m = 0.60, diff = 0.040^{***} (0.007)

INDUSTRIAL COMPOSITION

10th percentile: pop < 1m = -0.63, pop > 2.5m = -0.69, diff = -0.053*** (0.006) 90th percentile: pop < 1m = 0.66, pop > 2.5m = 0.74, diff = 0.074*** (0.008)

MIGRATION

Age

DECOMPOSING THE SKILL DISTRIBUTIONS

Small vs. big cities

	10% Quantile		90% Quantile		9	
Observed Quantiles:						
- Large cities	5.365	(0.004)	***	6.994	(0.006)	***
- Small cities	5.439	(0.005)	***	6.862	(0.007)	***
- Difference	-0.074	(0.006)	***	0.132	(0.009)	***
Firpo, Fortin, Lemieux (2009)						
Predicted Quantiles:						
- Large cities	5.387	(0.005)	***	7.022	(0.005)	***
- Small cities	5.454	(0.004)	***	6.878	(0.008)	***
- Difference	-0.068	(0.007)	***	0.144	(0.009)	***
Explained by observables:						
- Education (16 categories)	0.003	(0.002)	**	0.052	(0.002)	***
- Occupation (22 categories)	0.004	(0.002)	*	0.025	(0.003)	***
- Industry (51 categories)	-0.001	(0.002)		0.013	(0.002)	***
- Race (4 groups)	-0.004	(0.001)	***	-0.015	(0.001)	***
- Sex	-0.001	(0.001)	*	-0.002	(0.001)	*
- Foreign born	-0.020	(0.002)	***	-0.004	(0.001)	***
- Age (2nd order polynomial)	0.000	(0.001)		-0.002	(0.001)	*
Total explained by observables	-0.018	(0.004)	***	0.067	(0.005)	***
Not explained by observables	-0.049	(0.006)	***	0.077	(0.008)	***
Chernozhukov, Fernández-Val, Melly (2012)						
Predicted Quantile difference	-0.068	(0.006)		0.113	(0.009)	
Explained by observables	-0.019	(0.004)		0.064	(0.005)	
Not explained by observables	-0.050	(0.007)		0.049	(0.007)	

SORTING WITHIN CITIES New York City

SORTING WITHIN CITIES DETROIT

OUTLINE

- ${\bf I}~$ Zipf's and Gibrat's law
- **II** Spatial Sorting
- **III** Taxation

INCOME TAXATION IN LOCAL LABOR MARKETS

• Federal Taxes affect same skill workers differentially in cities:

- Urban Wage Premium
- Progressive Taxation

INCOME TAXATION IN LOCAL LABOR MARKETS

• Federal Taxes affect same skill workers differentially in cities:

- Urban Wage Premium
- Progressive Taxation
- Average tax rate: 3% points difference at median:

	Population	Wage level	Avg. Tax Rate
New York	19 million	1.22	26.5%
Janesville, WI	160,000	1.00	23.5%

INCOME TAXATION IN LOCAL LABOR MARKETS

• Federal Taxes affect same skill workers differentially in cities:

- Urban Wage Premium
- Progressive Taxation
- Average tax rate: 3% points difference at median:

	Population	Wage level	Avg. Tax Rate
New York	19 million	1.22	26.5%
Janesville, WI	160,000	1.00	23.5%

- Due to mobility: no redistribution! Same skills, same utility
- Policy Question: what is optimal spatial taxation policy?

Model

- J cities, with TFP A_j ; Identical agents; Output: $A_j I_i^{\gamma}$
- Amenities: $\varepsilon_j \rightarrow u(c,h) = (1 + \varepsilon_j)c^{1-\alpha}h^{\alpha}$
- Mobility: $u(c_j, h_j) = u(c_{j'}, h_{j'}), \quad \forall j, j'$
- Tax schedule

$$\tilde{w}_j = \lambda w_j^{1-\gamma}$$

- average tax rate: $\lambda w_i^{-\tau}$;
- marginal tax rate $\lambda(1-\tau)w_i^{-\tau}$
- $\tau = 0$: proportional; $\tau > 0$: progressive; $\tau < 0$: regressive
- US, estimated $au \approx$ 0.12

EMPIRICAL RESULTS

PARAMETRIZATION

- Production: $\gamma = 1$ output $A_j I_j$
- Tax schedule: $\tau = 0.12, \lambda = 0.752$ (OECD calculator)
- Housing Exp. 24% (Davis,Ortalo-Magné, 2009) $\Rightarrow \alpha = \frac{0.24}{\lambda} = 0.319$

OPTIMAL TAX SCHEDULE?

• TFP from average wages and labor force:

$$A_j = rac{w_j l_j^{1-\gamma}}{\gamma}, \ \forall j.$$

• Amenities from mobility (utility equalization):

$$1 + \varepsilon_j = \frac{l_j^{\alpha} w_1^{(1-\alpha)(1-\tau^{US})}}{l_1^{\alpha} w_j^{(1-\alpha)(1-\tau^{US})}}$$

• Revenue neutrality \rightarrow fixes λ

OPTIMAL TAX SCHEDULE?

• TFP from average wages and labor force:

$$A_j = rac{w_j l_j^{1-\gamma}}{\gamma}, \ \forall j.$$

• Amenities from mobility (utility equalization):

$$1 + \varepsilon_j = \frac{l_j^{\alpha} w_1^{(1-\alpha)(1-\tau^{US})}}{l_1^{\alpha} w_j^{(1-\alpha)(1-\tau^{US})}}$$

- Revenue neutrality \rightarrow fixes λ
- $\Rightarrow \forall \tau$, new l_i, u_i : search grid for τ that maximizes u

Optimal Tax Schedule $\tau^* = 9\%$

TAX SCHEDULES

ACTUAL VS. OPTIMAL

Change in Labor Force – Productivity

CHANGE IN LABOR FORCE – AMENITIES

CHANGE IN AFTER-TAX WAGES

CHANGE IN HOUSING PRICES

OUTCOMES FOR SELECTED CITIES

MSA	Α	ε	Δl	%Δ <i>p</i>	Δc	Δh
Highest A						
Bridgeport-Stamford-Norwalk, CT	1.38	-0.16	1.62	2.39	0.76	-1.60
San Jose-Sunnyvale-Santa Clara, CA	1.36	0.14	1.55	2.28	0.72	-1.52
San Francisco-Oakland-Fremont, CA	1.35	0.44	1.52	2.24	0.71	-1.50
Lowest A						
Brownsville-Harlingen, TX	0.53	0.00	-2.97	-4.32	-1.40	3.06
Amarillo, TX	0.49	-0.02	-3.31	-4.82	-1.56	3.42
Bowling Green, KY	0.46	-0.26	-3.65	-5.31	-1.72	3.79
Highest ε						
New York-Northern New Jersey-Long Island	1.17	1.45	0.83	1.22	0.39	-0.82
Los Angeles-Long Beach-Santa Ana, CA	1.02	1.37	0.16	0.24	0.08	-0.16
Chicago-Naperville-Joliet, IL-IN-WI	1.06	1.07	0.35	0.52	0.17	-0.35
Lowest ε						
Saginaw-Saginaw Township North, MI	1.17	-0.46	0.81	1.19	0.38	-0.80
Athens-Clark County, GA	1.04	-0.53	0.27	0.40	0.13	-0.27
Ocean City, NJ	1.12	-0.63	0.62	0.92	0.29	-0.62

c/h SUBSTITUTION

Aggregate Outcomes $\alpha = 0.319, \gamma = 1, \tau^* = 0.067$

Outcomes	%Δ
Output gain	1.02
Population in 5 largest cities	0.59
Average housing prices	1.25

SENSITIVITY

	$lpha=$ 0.24, $\gamma=1$	$lpha=$ 0.3191, $\gamma=$ 1.2
	$ au^{\star}=-0.0082$	$ au^{\star}=-0.0834$
Outcomes	$\%\Delta$	$\%\Delta$
Output gain	8.86	20.30
Population in 5 largest cities	4.91	9.63
Average housing prices	10.36	23.39

CONCLUDING REMARKS

Economics and the City

- 1. Zipf's law and Gibrat's law
 - Puzzle resolved

CONCLUDING REMARKS

Economics and the City

- 1. Zipf's law and Gibrat's law
 - Puzzle resolved
- 2. There is Spatial Sorting
 - Thick tails \rightarrow bigger inequality in big cities
 - Extreme-skill compl.: Urban wage premium not due to skills
 - $\rightarrow\,$ increasing over time + urbanization $\uparrow \Rightarrow$ inequality \uparrow

CONCLUDING REMARKS

Economics and the City

- 1. Zipf's law and Gibrat's law
 - Puzzle resolved
- 2. There is Spatial Sorting
 - Thick tails \rightarrow bigger inequality in big cities
 - Extreme-skill compl.: Urban wage premium not due to skills
 - $\rightarrow\,$ increasing over time + urbanization $\uparrow \Rightarrow$ inequality \uparrow
- 3. Federal Income Taxation does affect local labor markets
 - Effect on location decisions: big cities are too small
 - Optimal level of taxation: progressive, but city-specific

Economics and the City

 $\mathsf{Jan} \; \mathsf{Eeckhout}^\dagger$

[†]Barcelona GSE-UPF

Bojos per l'Economia 31 January, 2015

GREEN GROWTH IN CITIES

• Cities: dense, dirty, and polluted,...

GREEN GROWTH IN CITIES

- Cities: dense, dirty, and polluted,...
- Yet, green

GREEN GROWTH IN CITIES

- Cities: dense, dirty, and polluted,...
- Yet, green
- Large cities are more productive: urban wage premium = productivity premium
 Double city size and output grows by 4%
- But more expensive to live: elasticity wrt housing prices: 16%
- Large cities are more dense: more people in same space
 - Less consumption of energy
 - Less production of waste

KLEIBER'S LAW KLEIBER (1947)

Fig. 1. Log. metabol. rate/log body weight

KLEIBER'S LAW

• Energy consumption (metabolic rate) of animals and plants relates to their mass

 $q \sim M^{\frac{3}{4}}$

q: metabolic rate; M body mass

- Log-linear relationship
- Cat 100 heavier than mouse, would use 31 times energy
- For plants the exponent is close to 1

FROM BIOLOGY TO ECONOMICS

- Energy efficiency: consumption of energy; production of waste
- But: mass is not size of the city, but economic productivity
- Economic productivity is correlated with size (Urban Wage Premium)

URBAN WAGE PREMIUM UK DATA

URBAN ENERGY PREMIUM

14%

URBAN ENERGY PREMIUM

BREAKDOWN BY SOURCE

TABLE: Energy Demand by Source

Household	Transport	Industrial	Total
33.9%	28.0%	38.1%	100%

URBAN ENERGY PREMIUM

BREAKDOWN BY SOURCE

Urban Energy Premium _{Why?}

- Owen, David, Green Metropolis: Why Living Smaller, Living Closer, and Driving Less Are the Keys to Sustainability, 2009.
- Glaeser, Edward, Triumph of the City, 2011
- Energy Savings:
 - 1. Live in smaller space: less energy
 - 2. Apartments (vs. stand-alone buildings): more energy efficient
 - 3. Transportation: more efficient mass transportation (vs. car), walking, bike,...

URBAN WASTE PREMIUM

10%

URBAN WASTE PREMIUM

BREAKDOWN BY SOURCE

TABLE: Waste Supply by Source

	Household	Non-household	Total
Recycled	35.1%	3.3%	38.4%
Non-recycled	54.1%	7.5%	61.6%
Total	89.2%	10.8%	100%

URBAN WASTE PREMIUM

BREAKDOWN BY SOURCE

URBAN WASTE PREMIUM Why?

- Housing: small space (no garages):
 - do not collect junk
 - buy less durables (furniture,...)
 - do not buy outdoors durables

RANKING CITIES

A POLICY EXPERIMENT

CITY-SPECIFIC TAXATION

- From analysis on taxation results:
- Progressive taxation keeps workers from productive cities
- Productive cities are also clean
- \Rightarrow City-specific tax will:
 - 1. Increase population of big cities
 - 2. Increase productivity
 - 3. Shift people to cleaner living

A POLICY EXPERIMENT

CITY-SPECIFIC TAXATION

A POLICY EXPERIMENT

CITY-SPECIFIC TAXATION

Economics and the City

Jan Eeckhout[†]

[†]Barcelona GSE-UPF

Bojos per l'Economia 31 January, 2015