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Three Questions

1. Zipf’s and Gibrat’s law: where does it come from?

• A Surprising Regularity and a puzzle
• Economic forces

2. Is there Spatial Sorting?
• Who works in big cities?
• Technological determinants

3. Does Federal Income Taxation affect local labor markets?
• Effect on location decisions
• Optimal taxation policy
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Introduction

• Why are there cities of sizes? Why are there cities?
• Geographical determinants? Rivers, weather,...
• Consumer demand: amenities from size? Opera,...
• Labor markets?

• What are the technological determinants of productivity
across different size cities?

• Address two puzzles + policy implications:

1. Proportionate growth and Zipf’s law
2. Urban Wage Premium
3. Taxation

• Exploit the relation: wages – population – housing prices
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I. Population and Labor Market Dynamics
Zipf’s law
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Zipf’s Law

• The largest city is N times larger than the N-th city

S ≈ ea

Rank
(a = 10.53)

• First observed by Zipf (1949)

• Early systematic pattern: Le Mâıtre (1648), Auerbach (1913)

• Robust across time and space

• Remarkably systematic relationship

⇒ Krugman (1995): “We have to say that the rank-size rule is a
major embarrassment for economic theory: one of the
strongest statistical relationships we know, lacking any clear
basis in theory.”
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Zipf’s law

cities and MAs represent different notions about
the corresponding theory of an economic unit.
And depending on the definition, we are study-
ing different objects and therefore different dis-
tributions. As is the case with comparisons of
countries, we do not have a perfect justification
for using a particular unit of account when
comparing cities. In our theory below, we con-
sider local externalities that do not affect agents
outside the economic unit as the defining char-
acteristic of a city. In reality of course, no
externality is purely local. One may therefore
want to interpret this assumption as a matter of
the extent to which externalities do or do not
affect agents outside a given city. The danger is
that the partition into economic units is either
too fine or, at the other extreme, too coarse. The
externalities for some agents in one part of a
given economic unit (say those living in New
Haven) may not have an impact on those living
in different parts of the same unit (say Prince-

ton). Moreover, different research objectives
may call for the use of different units of ac-
count. For example, if one is interested in ana-
lyzing the economic impact of airports, the MA
seems a natural unit of account, while cities
may be more appropriate when studying
schools, public transportation, or waste collec-
tion. In past research, both MAs and cities have
proven to be useful and relevant economic
units, and both have been studied extensively.

In this paper, cities are chosen for several
reasons. In addition to the fact that cities are a
natural economic unit for studying the local
externalities that are modeled in Section III,
there is a practical reason: the availability of
data. We want to use data that cover the entire
range of the populations, in particular the
smaller ones. Because MAs are defined by the
Census Bureau only for large populations (MAs
must include “at least one city with 50,000 or

FIGURE 2. EMPIRICAL AND THEORETICAL DENSITY

FUNCTIONS FIGURE 3. EMPIRICAL AND THEORETICAL CUMULATIVE

DENSITY FUNCTIONS

TABLE 2—TEN LARGEST METROPOLITAN AREAS IN THE UNITED STATES

Rank MA Population S SNY /S

1 New York-Northern New Jersey-Long Island, NY-NJ-CT-PA 21,199,865 1.000
2 Los Angeles-Riverside-Orange County, CA 16,373,645 1.295
3 Chicago-Gary-Kenosha, IL-IN-WI 9,157,540 2.315
4 Washington-Baltimore, DC-MD-VA-WV 7,608,070 2.787
5 San Francisco-Oakland-San Jose, CA 7,039,362 3.012
6 Philadelphia-Wilmington-Atlantic City, PA-NJ-DE-MD 6,188,463 3.426
7 Boston-Worcester-Lawrence, MA-NH-ME-CT 5,819,100 3.643
8 Detroit-Ann Arbor-Flint, MI 5,456,428 3.885
9 Dallas-Fort Worth, TX 5,221,801 4.060

10 Houston-Galveston-Brazoria, TX 4,669,571 4.540

Note: SNY /S denotes the ratio of population size relative to New York.
Source: Census Bureau, 2000.

1435VOL. 94 NO. 5 EECKHOUT: GIBRAT’S LAW FOR (ALL) CITIES



Zipf’s Law

Two open questions:

1. Why Pareto distribution?
• Pareto vs. other distributions?
• Why so robust?

2. What are the economic forces behind this?



Zipf’s Law

• Zipf’s law: size distribution is Pareto with scale coefficient 1

• Pareto distribution (∀S ≥ S):

p(S) =
aSa

Sa+1

P(S) = 1−
(

S

S

)a

• If we denote rank by r , then (where N is # cities above
cutoff):

r = N(1− P(S)) = N

(
S

S

)a

and therefore

ln r = K − a ln S

(where K = ln N + a ln S).



Zipf’s law
Pareto Distribution

overs.” Information concerning new technolo-
gies and products spills over faster in markets
with high degrees of local interaction, like those
of large cities. Simultaneously, workers in
larger cities also impose negative externalities
on each other because commuting times are
longer. The economy differs from the one in
Lucas and Rossi-Hansberg (2002) because of
the explicit mobility between cities, rather than
within cities. The aim is to capture the notion of
competition between geographic locations, i.e.,
perfectly mobile citizens making location deci-
sions between different cities. Local externali-
ties within cities regulate the mobility of
citizens between different cities (i.e., there are
no externalities between cities). It is shown that
the local externality model economy predicts
behavior that is consistent with the empirical
city growth process.

The only remaining issue to resolve is how it
is possible that Zipf’s law is repeatedly con-
firmed in the literature, while the underlying
distribution is lognormal. The Pareto distribu-
tion is very different from the lognormal, so it is
obvious that if the true distribution is lognor-
mal, the entire distribution can never be fit to a
Pareto distribution at the same time. Consider
Figure 1 with a plot of the density function of
the lognormal and that of the Pareto distribution
(both on a ln scale); observe that the lognormal
on a log scale is the normal density function.
The density of the Pareto distribution is down-
ward sloping, whereas the lognormal density is
initially increasing and then decreasing (given
symmetry, half the observations are in the in-
creasing part). If the underlying distribution is
lognormal, then goodness of fit tests will cate-
gorically reject the Pareto distribution. Still,
when regressing log rank on log size for the entire
distribution,10 the coefficient comes out signifi-
cant. Estimating a linear coefficient when the
underlying empirical distribution is not Pareto
(i.e., the relation is nonlinear) can obviously
produce a significant estimate. This regression
test merely confirms that there is a relation
between size and rank, but it does not provide a
test for the linearity of this relation. As such,
testing the significance of the linear coefficient

is not the equivalent of a goodness-of-fit test for
the Pareto distribution.11

More important though is that until now the
literature considered the truncated distribution
(typically, the truncation point is at ln size equal
to 12 on the horizontal axis, i.e., for only 135
cities). At the very upper tail of the distribution,
there is no dramatic difference between the den-
sity function of the lognormal and the Pareto.
Now both the truncated lognormal and the Pa-
reto density are downward sloping and similar
(the Pareto is slightly more convex). As a result,
both the Pareto and the truncated lognormal
trace the data relatively closely. The problem is

10 This is the standard procedure in the literature to
verify for Zipf ’s law.

11 See also Gabaix and Ioannides (2003) on the short-
comings of OLS.

FIGURE 1. DENSITY OF LOGNORMAL (PANEL A) AND

PARETO (PANEL B) DISTRIBUTION
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A Second Regularity
Proportionate Growth

• Cities grow at different rates

• Growth is stochastic

• But: the average growth rate is independent of size



A Second Regularity
Proportionate Growth

more inhabitants”), the MA dataset does not
cover the entire size distribution. And even if
the dataset spans the entire domain of the size
distribution of all cities, not all inhabitants live
in cities, towns, or villages.20 Unfortunately,
these restrictions do not allow for the possibility
of augmenting the dataset to include popula-
tions that are currently not covered.21 It should
be noted that the current dataset of all cities has
already been augmented to form the largest
possible dataset that is feasible, with the inclu-
sion of the census-defined CDPs. This increases
the number of cities by 31 percent, from 19,361
to 25,359.

The fact that part of the population is not
covered is potentially a cause for concern, be-
cause rather than capturing deep patterns of
populations and population dynamics, we may
merely be describing the idiosyncrasy of the
jurisdictional formation in the United States.
The population that is not covered may be dis-
tributed in a completely different way from the
lognormal distribution. And since we cannot
assign that population to any geographic area
comparable to a city, there is no hope of know-
ing how the remainder is distributed. The log-
normality seems to be a strong regularity,
however, from whichever perspective popula-
tion dynamics is considered. First, while we
have no way of showing that the distribution of
MAs is lognormal given the truncation by def-
inition, we show below that even for MAs,
changes in the truncation point produce changes
in the estimated Zipf coefficient that are consis-
tent with the fact that the underlying upper tail
is derived from the lognormal. Second, the size
distribution of CPDs is pretty close to the entire
distribution of cities and hence the lognormal.
And finally, in the Appendix we show the re-
sults of further analysis using additional data
that are available from the Census. We plot the
size distribution of counties, which covers the
entire U.S. population (see Figure A-1 and
Table A-1 in Appendix A for the ten largest

counties). While it is hardly convincing to make
a case for counties as the relevant economic
unit, it is surprising that even the size distribu-
tion of counties is close to the lognormal. Look-
ing at population dynamics from the perspective
of different economic units and including as
large a fraction as possible of the U.S. popula-
tion, there is a strong pattern that is consistent
with lognormality.

C. Proportionate City Growth

For the cities in the upper tail of the size
distribution, population growth has repeatedly
been shown to satisfy constant proportionate
growth.22 These findings can be extended be-
yond those for the upper tail of the distribution.
We therefore use the data on population size for
places in the United States from both the 1990
and 2000 Censuses. Unfortunately, 1990 Cen-
sus data do not include the CDPs. As a result,
the sample size is significantly smaller (19,361
instead of 25,359). Figure 4 shows the scatter
plot of growth against city size (on ln scales).
Mere observation of the scatter plot seems to

20 All citizens belong to a county, which is the primary
legal division and the functioning governmental unit.

21 Those residual populations are included in the coun-
ties, and after accounting for the cities, residual populations
very often are located in different geographic areas, sepa-
rated by cities. To make things even worse, many cities
extend over different counties, therefore guaranteeing that
parts of the residual populations are counted twice.

22 Glaeser et al. (1996) have shown this to be true for the
largest cities in the United States. Eaton and Eckstein (1997)
have confirmed this for the largest cities in France and
Japan. In a detailed investigation, Ioannides and Overman
(2003) nonparametrically estimate the mean and variance of
growth rates conditional on size for the largest MAs in the
United States. They accept the hypothesis that the city-size
growth rate is constant across cities of different sizes, i.e.,
population growth is proportionate.

FIGURE 4. SCATTER PLOT OF CITY GROWTH AGAINST

CITY SIZE
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A Second Regularity
Proportionate Growth

support that growth is independent of size. In
what follows, the dependence relation of growth
on size is analyzed in greater detail. We perform
both nonparametric and parametric regressions
of growth on size.

First, we perform a nonparametric regression
of growth on size.23 The standard parametric
regressions as performed below provide us only
with an aggregate relationship between growth
and size, which is constrained to hold over the
entire support of the distribution of city sizes. In
contrast, the nonparametric estimate allows
growth to vary with size over the distribution.
The regression relationship we model is there-
fore

gi ! m!Si " " #i

for all i # 1, ... , 19361. The objective is to
provide an approximation of the unknown rela-
tionship between growth and size using smooth-
ing, without making parametric assumptions
about the functional form of m. Before estimat-
ing m, we report the distribution of growth rates
for each decile of the size distribution. Follow-

ing Ioannides and Overman (2003), we use the
normalized growth rate (the difference between
the growth rate and the sample mean divided by
the standard deviation). In Figure 5, the stochas-
tic kernel density24 is plotted for each of the 10
deciles. Fixing a particular decile in the distri-
bution, we can observe the distribution of
growth rates within that decile. Figure 6 reports
the contour plot of the same stochastic kernel,
i.e., the vertical projection of the density func-
tion. Both figures illustrate that the distribution
of growth rates is strikingly stable over different
deciles. The best illustration of the size inde-
pendence is the fact that the contour lines are
parallel. The distribution is slightly skewed (the
mode is just below zero), and the mode appears
fairly constant over different deciles. The same
is true for the variance. While the variance of
the lowest decile seems to be somewhat higher
(the contour lines fan out somewhat), there
seems to be little change in the spread of the
distribution for higher deciles.

We now proceed to estimate the regression
relationship gi # m(Si) $ #i, i # 1, ... , 19361,
where gi is the normalized growth rate, i.e., the

23 This section on the nonparametric analysis follows
closely the analysis in Ioannides and Overman (2003). We
derive a sequence of results for our dataset of all cities
similar to theirs, obtained for a time-series dataset on the
largest MAs.

24 Each stochastic kernel is calculated using the band-
width derived with the automatic method corresponding to
the Gaussian distribution (see Bernard W. Silverman,
1986).

FIGURE 5. SURFACE PLOT: KERNEL DENSITY ESTIMATION OF NORMALIZED GROWTH RATES

BY DECILE OF THE SIZE DISTRIBUTION
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A Second Regularity
Proportionate Growth

difference between growth and the sample mean
divided by the sample standard deviation, and Si
is the log of the population size of a city. We
will approximate the true relationship by the
regression curve m(s) for all s in the support of
Si. The estimate of m(s) will be denoted m̂(s)
and is a local average around the point s. This
local average smooths the value around s, and
the smoothing is done using a kernel, i.e., a
continuous weight function symmetric around s.
The kernel K used in the remainder of the paper
will be an Epanechnikov kernel.25 The band-
width h determines the scale of the smoothing,
and Kh denotes the dependence of K on the
bandwidth h. With the kernel weights, we cal-
culate the estimate of m using the Nadaraya-
Watson method,26 where

m̂!s" !

n#1 ¥
i $ 1

n

Kh !s " Si "gi

n#1 ¥
i $ 1

n

Kh !s " Si "

.

In Figure 7 there is a plot of m̂(s) calculated
for a bandwidth of h $ 0.5 (see Silverman,
1986). The Figure also shows the bootstrapped

95-percent confidence bands (calculated from
500 random samples with replacement). In line
with the earlier results, the nonparametric esti-
mate of the conditional mean is stable across
different population sizes, except for the very
bottom of the distribution.27 The estimate seems
to exhibit some slightly inverted U-shape, with
somewhat higher growth rates in the middle
range of population sizes and lower growth at
the ends. If the underlying relation between
growth and size is constant, then the estimate
will lie in the 95-percent confidence bands. This
seems to suggest that, except for some values
near the lower boundary, we cannot reject that
growth is independent of size. Observe that
because the kernel is a fixed function and
boundary observations have support only on
one side of the kernel, the kernel estimates near
the boundaries must be read with caution.

In Table B-1 in Appendix B, some further
descriptive statistics are reported for growth
rates over the entire support of the distribution.
Consistent with the kernel estimates, average
growth rates seem to be constant, except at the
very bottom of the distribution. We also calcu-
late the standard deviation and the Interquartile
Range (IQR) of the growth rate. The IQR is
defined as the difference between the seventy-
fifth and twenty-fifth percentiles (Q3 # Q1).
This provides an indication of the variation in
growth rates. For the largest 100 cities, growth
rates vary less, whereas the smallest 100 cities
exhibit higher variation in growth rates. The

25 Results below have been replicated using the Gaussian
kernel and reveal no differences with those using the Ep-
anechnikov kernel.

26 See Wolfgang Härdle (1990).

27 At the bottom of the distribution there is also more
variation in growth rates (see IQR calculations below).
Because the confidence bands impose a requirement over
the entire domain of the size distribution, the width of the
bands is likely to be affected by the variation at the bottom.

FIGURE 6. CONTOUR PLOT: KERNEL DENSITY ESTIMATION

OF NORMALIZED GROWTH RATES BY DECILE OF THE
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FIGURE 7. KERNEL ESTIMATE OF POPULATION GROWTH
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A Second Regularity
Proportionate Growth

difference between growth and the sample mean
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is the log of the population size of a city. We
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Proportionate Growth

Parametric growth regressions:

standard deviation of the growth rate of the
largest 100 cities is an order of 4 to 5 times
smaller compared to the entire sample (0.158
versus 0.729). Also for the IQR there is a de-
crease at the top of the distribution (0.154 ver-
sus 0.199), but to a lesser extent than in the case
of the standard deviation. This seems to indicate
that the tails of the distribution of growth rates
of the top 100 cities are not as fat. For the
smallest 100 cities, the variation in growth
rates as measured by the IQR increases28

2.5 times relative to the IQR for the entire
sample (0.493 versus 0.199). For the remainder
of the support of the size distribution, the IQR
of growth rates is more or less constant for all
sizes, except for the bottom decile of the size
distribution. Figure B-1 in Appendix B plots
the IQR for each decile. Observe the sharp in-
crease in the IQR at the bottom decile of the
distribution (0.297 versus 0.199 for the entire
sample).

The proportionate growth process that satis-
fies Gibrat’s law and that gives rise to a log-
normal distribution is also characterized by a
size-independent variance. The kernel estimate
of the variance !̂2(s) (see Härdle, 1990) is cal-
culated as

!̂2!s" "

n#1 ¥
i $ 1

n

Kh !s # Si "!gi # m̂!s""2

n#1 ¥
i $ 1

n

Kh !s # Si "

.

As in Ioannides and Overman (2003) for MAs,
we find that at the boundaries the variance of
growth rates of cities is dependent on size.29 In
particular, for very small cities with population
size around 10 inhabitants (with ln size between
2 and 3) and for very large cities, the variation
in growth rates is markedly different, as re-
ported in the IQR calculations above. Figure 7
plots the estimated variance30 (bandwidth 0.5)

for 95 percent of the cities in the sample, i.e.,
excluding the top and bottom 2.5 percent. This
corresponds to all cities larger than 65 (ln is 4.1)
and smaller than 56,000 (ln is 10.9). We find
that some outliers have an enormous impact on
the variance. For example, Eagle Mountain,
Utah, the fastest growing city in the sample, has
grown at a rate of 7,090 percent. These outliers
alone cause spikes in the variance, which can be
seen from observation of the dotted line, repre-
senting the kernel estimate of the variance for
all observations (for example, around ln size
equal to 7; observe also that given the band-
width of 0.5, the effect of the outliers is con-
strained to a distance of 0.5). The solid line
represents the kernel estimate of the variance
for all observations excluding 9 outliers (obser-
vations have been dropped with growth rates
above 1,000 percent). Without the outliers, the
variance is remarkably stable across different
sizes of cities.

Consider now the parametric growth re-
gressions. For the entire size distribution, no
significant effect of the size of a city is found
on the growth, as confirmed by the following
regression:

S00

S90
" 1.102 # 3.75E!#08"

S90 $ S00

2
!0.005" !7E!#08""

(n $ 19361), where S00/S90, the ratio of the
population size in 2000 and 1990, is the gross
growth rate of the population, and S90 % S00/2
is the average of the 1990 and 2000 populations.
The coefficient on size is clearly insignificant
(standard errors in parentheses). Note that the
intercept—a net rate of 10.2 percent—is the
country-wide growth for the entire sample pop-
ulation between 1990 and 2000 and corresponds
to an annual population growth rate of (1 %
ga)10 $ 1.103 or ga $ 1 percent. The lack of
significance of city growth on size is further
confirmed when the dependent variable is the
population size in 1990:

S00

S90
" 1.103 $ 2.3E!#09"S90

!0.005" !7.3E!#08""

(n $ 19361). Finally, also when using loga-
rithm of gross growth between 2000 and 1990

28 Though this is not the case for the standard deviation.
29 See also Härdle (1990) for a discussion on the reli-

ability of the estimates at the tails of the distribution where
the density takes on very small values.

30 Observe in Figure 7 that the variance of the full
sample is equal to one. This is due to the fact that we
calculate the variance of normalized growth rates.
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A Puzzle

• How can we reconcile
1. Zipf’s law, and
2. proportionate growth?

• Reason: Gibrat’s Law: proportionate growth
⇒ log-normal distribution of city sizes, not Pareto

• Proportionate growth

Si ,t = (1 + εi ,t)Si ,t−1
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A Puzzle

• Between any two periods t:

ln Si ,t = ln Si ,t−1 + εi ,t

and therefore:

ln Si ,T = ln Si ,0 + εi ,1 + · · ·+ +εi ,T .

• From the central limit theorem, ln Si ,T is asymptotically
normal, and therefore Si ,T is asymptotically log-normal
(Gibrat 1931)

⇒ Proportionate growth ⇒ lognormal distribution (not Pareto)



A Puzzle

overs.” Information concerning new technolo-
gies and products spills over faster in markets
with high degrees of local interaction, like those
of large cities. Simultaneously, workers in
larger cities also impose negative externalities
on each other because commuting times are
longer. The economy differs from the one in
Lucas and Rossi-Hansberg (2002) because of
the explicit mobility between cities, rather than
within cities. The aim is to capture the notion of
competition between geographic locations, i.e.,
perfectly mobile citizens making location deci-
sions between different cities. Local externali-
ties within cities regulate the mobility of
citizens between different cities (i.e., there are
no externalities between cities). It is shown that
the local externality model economy predicts
behavior that is consistent with the empirical
city growth process.

The only remaining issue to resolve is how it
is possible that Zipf’s law is repeatedly con-
firmed in the literature, while the underlying
distribution is lognormal. The Pareto distribu-
tion is very different from the lognormal, so it is
obvious that if the true distribution is lognor-
mal, the entire distribution can never be fit to a
Pareto distribution at the same time. Consider
Figure 1 with a plot of the density function of
the lognormal and that of the Pareto distribution
(both on a ln scale); observe that the lognormal
on a log scale is the normal density function.
The density of the Pareto distribution is down-
ward sloping, whereas the lognormal density is
initially increasing and then decreasing (given
symmetry, half the observations are in the in-
creasing part). If the underlying distribution is
lognormal, then goodness of fit tests will cate-
gorically reject the Pareto distribution. Still,
when regressing log rank on log size for the entire
distribution,10 the coefficient comes out signifi-
cant. Estimating a linear coefficient when the
underlying empirical distribution is not Pareto
(i.e., the relation is nonlinear) can obviously
produce a significant estimate. This regression
test merely confirms that there is a relation
between size and rank, but it does not provide a
test for the linearity of this relation. As such,
testing the significance of the linear coefficient

is not the equivalent of a goodness-of-fit test for
the Pareto distribution.11

More important though is that until now the
literature considered the truncated distribution
(typically, the truncation point is at ln size equal
to 12 on the horizontal axis, i.e., for only 135
cities). At the very upper tail of the distribution,
there is no dramatic difference between the den-
sity function of the lognormal and the Pareto.
Now both the truncated lognormal and the Pa-
reto density are downward sloping and similar
(the Pareto is slightly more convex). As a result,
both the Pareto and the truncated lognormal
trace the data relatively closely. The problem is

10 This is the standard procedure in the literature to
verify for Zipf ’s law.

11 See also Gabaix and Ioannides (2003) on the short-
comings of OLS.

FIGURE 1. DENSITY OF LOGNORMAL (PANEL A) AND

PARETO (PANEL B) DISTRIBUTION
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Reconciling Evidence

• Gabaix (1999): a process with entry and exit at high
truncation

• The fit of the Pareto tail (Zipf’s law) is for 135 cities only

⇒ Something going on outside tail

⇒ Need to consider entire distribution, not just the truncation



Evidence
Zipf’s law for (All) MSA’s?

The estimated coefficient on the Pareto dis-
tribution is clearly sensitive to the choice of the
truncation point. Moreover, the dependence of
the estimate is systematic: the lower the trunca-
tion point (i.e., the larger the sample size), the
lower the estimated coefficient of the Pareto
distribution.35 The same is expected to be true
for the size distribution of cities. In what fol-
lows, it is shown that a theoretical justification
for the fact that the estimated Pareto coefficient
is increasing for an increasing truncation point
is given by the fact that the underlying sample is
distributed lognormal.

Consider the lognormal density function !!
as given in equation (1). To simplify notation,
let x ! ln S, and denote the normal cumulative
density function by "(x). Now consider the
truncated lognormal distribution at truncation
point x" ! ln S" . Then the cdf of the truncated
lognormal is

"#x$ " "#x" $

1 " "#x" $
.

As before, let N" be the sample size of the
truncated distribution. Then the rank can be
written as

r # N" ! !1 "
"#x$ " "#x" $

1 " "#x" $ "
# N" ! !1 " "#x$

1 " "#x" $"
and taking logs

ln r # ln#N" ! !1 " "#x$

1 " "#x"$"$
or

(2) ln r # ln
N"

1 " "#x"$
$ ln#1 " "#x$$.

If the underlying true distribution is the log-
normal, then from the last equation, the relation
between ln r and ln S will not be linear. As a
result, the hypothesis that size is everywhere
inversely proportional to rank (Zipf’s law) is not
correct. In particular, ln(1 % "(x)) is not linear
in x ! ln S. Calculating the derivative of the
term that depends on x in equation (2) gives

d
dx

ln#1 " "#x$$ # %
!#x$

1 " "#x$

# %h#x$

which is the negative of the hazard rate. It is
easily verified that the hazard rate for the cor-
responding lognormal distribution with sample
mean and variance %̂ ! 7.28, &̂ ! 1.75 is
strictly increasing over the entire domain (and
positive by definition). The plot of the hazard
function h(x; %̂, &̂) is given in Figure 11.

A strictly increasing hazard rate implies that
the second derivative of the term ln(1 % "(x))
is strictly concave, i.e., d2/dx2ln(1 % "(x)) !
%h&(x) ' 0. Now, given a decreasing, strictly
concave function in x, the linear estimate of this
function will systematically depend on the trun-
cation point: the higher the truncation city size,
the higher the estimate of the linear regression.
Because an increase in the truncation size im-
plies a decrease in the truncated sample popu-
lation, the estimate will be decreasing as the
sample population increases. This establishes
the following proposition:

PROPOSITION 1: If the underlying distribu-
tion is the lognormal distribution "(x; %̂, &̂),

35 While the analysis below for cities as opposed to MAs
may be suggestive for the relation between the estimated
Pareto coefficient and the truncation point, other expla-
nations have been suggested in the literature. In particu-
lar, see the review on MAs by Gabaix and Ioannides
(2003).

FIGURE 10. MA SIZE DISTRIBUTION AND LINEAR

REGRESSION LINES FOR DIFFERENT TRUNCATION POINTS
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Evidence
Places

• By definition, MSA is truncated (at least one city with
population > 50, 000)

• Use a different definition: incorporated places
• Largest: five boroughs of NYC
• But not New Jersey, Connecticut,...
• Based on the legal definition (mayor,...)
• Some are extremely small (zero population!)
• 25,359 places; median size = 1,338
• Only 73% of population



Evidence
Places

A substantial portion of research into the size
distribution of the U.S. population has been
done using the MA19 as the unit of measure-
ment (see, for example, Krugman, 1996;
Gabaix, 1999; Ioannides and Henry G. Over-
man, 2003). An MA typically covers one (or
several) large cities. The largest metropolitan
area is New York-Northern New Jersey-Long
Island, including the cities of New Haven, Con-
necticut, Newark and Trenton, New Jersey, and
several smaller towns in eastern Pennsylvania.
The ten largest MAs and their population size
are listed in Table 2.

The total number of MAs in the United States
is 276, the smallest of which is Enid, Oklahoma,
with a population of 57,813. In 2000, 80 percent
of the entire U.S. population lived in MAs. At
first sight, it may seem surprising that 80 per-
cent lived in the 276 MAs, while only 73 per-
cent lived in 25,359 places. The reason is that
MAs cover huge geographic areas. For exam-
ple, Trenton, New Jersey, is 64 miles from New
York City and 144 miles from New Haven,
Connecticut. As a result, MAs include a large
population living in rural areas which are not
counted as places. Consider, for example, Mer-
cer County, New Jersey, in the MA of New
York-Northern New Jersey-Long Island, which
includes Princeton and Trenton. In 2000, Mercer
County had a population of 350,761, of which
only about 31 percent lived in incorporated places.

B. The Size Distribution

Over the entire size distribution, the median
city has a population of 1,338. Figure 2 plots the
empirical density function on a natural logarith-
mic (ln) scale, together with the theoretical log-
normal density for the empirically observed
mean and variance. Figure 3 plots the cumula-
tive density function. The sample mean (in ln,
standard error in brackets) is !̂ ! 7.28 (0.01)
and the standard deviation is "̂ ! 1.75. The
theoretical density function of the lognormal
size distribution is normal in ln S and given by
#(!̂, "̂):

(1) #"!̂, "̂# $
1

"̂!2%
e$"lnS $ !̂#2/2"̂ 2.

A Kolmogorov-Smirnov (KS) test of good-
ness of fit of the empirical density function
against the lognormal with sample mean !̂ !
7.28 and sample standard deviation "̂ ! 1.75
generates the KS test statistic D ! 0.0189, and
the corresponding p-value obtained is 1 percent.
This is supporting evidence in favor of lognor-
mality of the size distribution. Though the fit is
remarkable, it is not perfect. There seems to be
some skewness (third moment is 0.21) and the
median value is 7.20 (with mean of 7.28). On
the other hand, there is hardly any kurtosis (the
fourth moment is 0.03). Possibly there is some
censoring (most likely at the bottom of the
distribution). The data collected may be con-
taminated by differences between state legisla-
tion with respect to legal incorporation, in
particular for small places. In addition, since the
data contain CDPs, the decision procedure by
the Census Bureau to designate a nonincorpo-
rated place may depend on the size of the place
and, as a result, it will affect the size distribution
of places, in particular at the bottom end. Fur-
thermore, given the extremely large sample size
of n ! 25,359, small deviations from the theo-
retical distribution are exaggerated in goodness
of fit tests. It is surprising that, despite some
potential shortcomings of the data, the empirical
size distribution fits the lognormal distribution
that well.

Before analyzing the properties of the city
growth process, a fundamental issue remains:
what is the appropriate economic unit that
should be studied? As Tables 1 and 2 highlight,

19 According to the Census Bureau definition, an MA
“must include at least one city with 50,000 or more inhab-
itants, or a Census Bureau–defined urbanized area (of at
least 50,000 inhabitants) and a total metropolitan population
of at least 100,000 (75,000 in New England).”

TABLE 1—TEN LARGEST CITIES IN THE UNITED STATES

Rank City Population S SNY/S

1 New York, NY 8,008,278 1.000
2 Los Angeles, CA 3,694,820 2.167
3 Chicago, IL 2,896,016 2.753
4 Houston, TX 1,953,631 4.099
5 Philadelphia, PA 1,517,550 5.277
6 Phoenix, AZ 1,321,045 6.062
7 San Diego, CA 1,223,400 6.546
8 Dallas, TX 1,188,580 6.738
9 San Antonio, TX 1,144,646 6.996

10 Detroit, MI 951,270 8.419

Note: SNY /S denotes the ratio of population size relative to
New York.
Source: Census Bureau, 2000.
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Evidence
All Cities

cities and MAs represent different notions about
the corresponding theory of an economic unit.
And depending on the definition, we are study-
ing different objects and therefore different dis-
tributions. As is the case with comparisons of
countries, we do not have a perfect justification
for using a particular unit of account when
comparing cities. In our theory below, we con-
sider local externalities that do not affect agents
outside the economic unit as the defining char-
acteristic of a city. In reality of course, no
externality is purely local. One may therefore
want to interpret this assumption as a matter of
the extent to which externalities do or do not
affect agents outside a given city. The danger is
that the partition into economic units is either
too fine or, at the other extreme, too coarse. The
externalities for some agents in one part of a
given economic unit (say those living in New
Haven) may not have an impact on those living
in different parts of the same unit (say Prince-

ton). Moreover, different research objectives
may call for the use of different units of ac-
count. For example, if one is interested in ana-
lyzing the economic impact of airports, the MA
seems a natural unit of account, while cities
may be more appropriate when studying
schools, public transportation, or waste collec-
tion. In past research, both MAs and cities have
proven to be useful and relevant economic
units, and both have been studied extensively.

In this paper, cities are chosen for several
reasons. In addition to the fact that cities are a
natural economic unit for studying the local
externalities that are modeled in Section III,
there is a practical reason: the availability of
data. We want to use data that cover the entire
range of the populations, in particular the
smaller ones. Because MAs are defined by the
Census Bureau only for large populations (MAs
must include “at least one city with 50,000 or

FIGURE 2. EMPIRICAL AND THEORETICAL DENSITY

FUNCTIONS FIGURE 3. EMPIRICAL AND THEORETICAL CUMULATIVE

DENSITY FUNCTIONS

TABLE 2—TEN LARGEST METROPOLITAN AREAS IN THE UNITED STATES

Rank MA Population S SNY /S

1 New York-Northern New Jersey-Long Island, NY-NJ-CT-PA 21,199,865 1.000
2 Los Angeles-Riverside-Orange County, CA 16,373,645 1.295
3 Chicago-Gary-Kenosha, IL-IN-WI 9,157,540 2.315
4 Washington-Baltimore, DC-MD-VA-WV 7,608,070 2.787
5 San Francisco-Oakland-San Jose, CA 7,039,362 3.012
6 Philadelphia-Wilmington-Atlantic City, PA-NJ-DE-MD 6,188,463 3.426
7 Boston-Worcester-Lawrence, MA-NH-ME-CT 5,819,100 3.643
8 Detroit-Ann Arbor-Flint, MI 5,456,428 3.885
9 Dallas-Fort Worth, TX 5,221,801 4.060

10 Houston-Galveston-Brazoria, TX 4,669,571 4.540

Note: SNY /S denotes the ratio of population size relative to New York.
Source: Census Bureau, 2000.
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Evidence
All Cities
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Evidence
Places

Citizens in large cities must devote part of their
leisure time to nonproductive but work-related
commuting.

The model, like Lucas and Rossi-Hansberg’s
(2002) theory of the internal structure of cities,
incorporates those two counteracting external
forces. The current model does not explicitly
model internal geographic heterogeneity of the
city. Because in Lucas and Rossi-Hansberg
(2002) citizens obtain the same utility over dif-
ferent locations, it is without loss of generality
that citizens within a given city are considered
identical. The main objective is to understand
economic and population differences between
cities, rather than within cities. The city is there-
fore not considered in isolation, but rather ex-
periences population mobility from and to
different cities. The main aim is to extend the
work in this literature on the internal structure

of cities and allow for competition between
cities of different sizes. The space in which
heterogeneous cities are considered is therefore
the size space rather than a given geographical
space.

Define an economy with local externalities C.
Time is discrete and indexed by t. Let there be
a set of locations (cities) i ! I ! {1, ... , I}.
Each city has a continuum population of size
Si,t, and the total, country-wide population size
S ! ¥I Si,t. All individuals are infinitely lived
and can perform exactly one job. Let Ai,t be the
productivity parameter that reflects the techno-
logical advancement of city i at time t. The law
of motion of Ai,t is Ai,t ! Ai,t"1(1 # !i,t). Each
city experiences an exogenous technology
shock !i,t. Let !t denote the vector of shocks of
all cities. The city-specific shock is symmetric
and is identically and independently distributed
with mean zero, and 1 # !i,t $ 0.38 On ag-
gregate, there is no growth in productivity.39

38 This law of motion implies that ln(Ai,t) follows a unit
root process. In empirical applications, the presence of a
unit root often cannot be rejected. In the real business cycle
literature, for example, using the Solow residual to measure
TFP, the point estimates found on the persistence parameter
" in Ai,t ! (Ai,t"1)"(1 # !i,t) cannot be rejected to be
different from 1 (see, for example, Robert G. King and
Sergio T. Rebelo, 1999).

39 Recent work by Rossi-Hansberg and Wright (2004)
and Gilles Duranton (2002) has proposed different growth
models that can explain Zipf’s law. Rossi-Hansberg and
Wright (2004), for example, have shocks at the industry
level. The implication is that while industry size is persistent
over time, the size of a given city is not related to that of
industries, as industries and workers can relocate each pe-

TABLE 3—PARETO COEFFICIENT REGRESSIONS

Truncation point Estimates

R2N! S! City K̂ (s.e.) â (s.e.) (GI s.e.)

135 155,554 Chattanooga (city), TN 21.099 1.354 0.99
(0.144) (0.011) (0.165)

2,000 19,383 Lyndhurst (CDP), NJ 20.648 1.314 0.997
(0.017) (0.002) (0.042)

5,000 6,592 Attalla (city), AL 18.588 1.125 0.985
(0.019) (0.002) (0.023)

12,500 1,378 Fullerton (city), NE 15.944 0.863 0.961
(0.014) (0.002) (0.011)

25,000 42 Paoli (town), CO 13.029 0.534 0.860
(0.010) (0.001) (0.005)

Notes: Dependent variable: Rank (ln). s.e. standard error; GI s.e. Gabaix-Ioannides (2003)
corrected standard error (â(2/N)1/2).
Source: Census Bureau, 2000.

FIGURE 12. ENTIRE SIZE DISTRIBUTION AGAINST RANK

AND LINEAR REGRESSION LINES FOR DIFFERENT

TRUNCATION POINTS
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From Population to Economics

• What drives population mobility?

1. Geography: rivers, coasts, mountains, weather
2. Amenities: Opera, externalities (+/-, (non-)pecuniary), ...
3. Productivity Changes

• Citizen mobility in response to changes in prices: wages,
housing prices, consumption prices,...

• Prices are determined in equilibrium

→ A general equilibrium theory of production across locations

∴ Objective: understand economic mechanisms (technology,
preferences,...) from observing the population dynamics



From Population to Economics

• Local TFP Ai ,t ; law of motion: Ai ,t = Ai ,t−1(1 + σi ,t) where
σi ,t is zero mean i.i.d.

• Local externalities:
• positive in production a+(Si,t) (a′+(Si,t) > 0)
• negative (commuting) a−(Si,t) (a′−(Si,t) < 0)

• Identical firms in a competitive local labor market produce
yi ,t = Ai ,ta+(Si ,t) ⇒ wage is equal to marginal product

• Stock of land in each city is H; unit price of land is pi ,t and
individual consumption is hi ,t

• Preferences: u(c , h, l) = cαhβ(1− l)1−α−β

• Perfect mobility across cities (no moving cost)

Proposition
Under general conditions, city size satisfies Gibrat’s law:
population growth is proportionate and the asymptotic size
distribution is lognormal.
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What is a City?
Àrea Metropolitana de Barcelona



What is a City?

8/20/13 washington DC - Google Maps

https://maps.google.com/maps?f=q&source=s_q&hl=en&geocode=&q=washington+DC&aq=&sll=40.830437,-73.602905&sspn=2.730598,5.163574&vpsrc=… 1/1

Address Washington,  DC

MSA, Place, County,...



What is a City?
Counties

tion is actually lognormal, or a convolution of
different lognormals.

The fact that Gibrat’s proposition is estab-
lished concerning the population mobility of
cities is a necessary requirement for an empiri-
cally consistent theory of the underlying eco-
nomic activity. The second main purpose of this
paper is to propose and solve an equilibrium
model of local externalities where wages and
prices guide citizens in their location decision.
Consistent with proportionate growth and a log-
normal size distribution, the model establishes a
mechanism of local productivity shocks in the
presence of local externalities and their effect,
through worker mobility, on the population size
distribution of cities.

APPENDIX A: THE SIZE DISTRIBUTION

OF COUNTIES

We investigate the size distribution of coun-
ties. While counties may not necessarily be the
right geographical unit that an economist is
interested in, they do have the major advantage
that the size distribution of counties comprises
100 percent of the U.S. population, i.e., 281
million in 2000. According to the Census, coun-
ties are described as the primary legal divisions
of most states. For example, voting for most
elections is organized at the county level. Most
counties are functioning governmental units,
whose powers and functions vary from state to

state. Legal changes to county boundaries or
names are typically infrequent.

In 2000, there were 3,141 counties in the
United States covering the entire population.
The ten largest are listed in Table A-1. The
largest, Los Angeles County, California, had
9.5 million inhabitants and the smallest, Loving
County, Texas, 67 inhabitants. The sample
mean (in ln, standard error in brackets) is !̂ !
10.22 (0.02) and the standard deviation is "̂ !
1.41.

In Figure A-1 we plot the size distribution,
together with the normal density #(!̂, "̂).

The size empirical density is remarkably simi-
lar to the normal. There is somewhat more mass
near the mode, and the distribution may be slightly
skewed, but the distribution of county size is
nonetheless surprisingly close to lognormal.

TABLE A-1—TEN LARGEST COUNTIES IN THE UNITED

STATES

Rank City Population S SLA/S

1 Los Angeles County, CA 9,519,338 1.000
2 Cook County, IL 5,376,741 1.770
3 Harris County, TX 3,400,578 2.799
4 Maricopa County, AZ 3,072,149 3.099
5 Orange County, CA 2,846,289 3.344
6 San Diego County, CA 2,813,833 3.383
7 Kings County, NY 2,465,326 3.861
8 Miami-Dade County, FL 2,253,362 4.225
9 Queens County, NY 2,229,379 4.269

10 Dallas County, TX 2,218,899 4.290

Note: SLA/S denotes the ratio of population size relative to
Los Angeles.
Source: Census Bureau, 2000.

APPENDIX B: ADDITIONAL STATISTICS

OF CITY GROWTH

TABLE B-1—DESCRIPTIVE STATISTICS OF CITY GROWTH

Range of cities Growth rate (non-normalized)

N mean stdev IQR (Q3 " Q1)

All 19,361 0.103 0.729 0.199
Top 100 100 0.108 0.158 0.154
Bottom 100 100 "0.127 0.671 0.493
P10 to P90 15,488 0.106 0.786 0.191

Source: Census Bureau, 1990–2000.

FIGURE A-1. EMPIRICAL AND THEORETICAL DENSITY

FUNCTIONS OF ALL COUNTIES
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What is a City?
Constructing cities

Holmes and Lee: a unit consists of a 6× 6 miles area

Cities as Six-by-Six-Mile Squares: Zipf’s Law?    111

We use six miles for our baseline, because in the fi rst version of this chap-
ter, we used the original township grid of six- by- six- mile squares. This grid 
was laid down in the early 1800s by the Public Land Survey System (PLSS) 
for the purpose of selling federal lands. (See Linklater [2003] and Holmes 
and Lee [2008].) That was a good place to start, but we eventually realized 
that drawing our own grid would be much cleaner. That way, we could cover 
states that were otherwise left out (e.g., the original thirteen states were not 
surveyed, because there were no federal lands to sell). Moreover, the original 
survey done with chains and landmarks was sloppy compared to what we 
can do now on a computer. We have to anchor the grid at some place, but as 
we show later, shifting the grid up or down or left or right is irrelevant. As 
discussed in section 3.7, a large enough change in the grid size can make a 
difference but not a small change.

The grid has 85,527 squares, each exactly thirty- six square miles, sum-
ming up to 3.1 million square miles of the continental United States. Figure 
3.1 illustrates the grid in the vicinity of New York City. Note the six- by- six 
squares along the coast project into the water. We treat these areas as full 
six- by- six- mile squares and do not distinguish between dry land and water 
when delineating the surface area within the square. We make no distinc-

Fig. 3.1  Map of grid lines for six- by- six squares in the vicinity of New York City



Outline

I Zipf’s and Gibrat’s law

II Spatial Sorting

III Taxation
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Spatial Sorting
The Urban Wage Premium

• The elasticity of average wage with respect to city size is 4.2%

• Big differences:

Population Wage Wage Ratio

New York 19 million 897 1.22
Janesville, WI 160,000 735 1.00

⇒ Explanations?

1. Amenities
2. Cost of Living
3. Sorting
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City as a team
Production and Complementarities

• From team to city:

• Aggregate production technology w/ specific complementarities

• Additional economic forces: housing prices

• Objective: derive skill complementarities from choice of citizens

where to live/work

⇒ Spatial Sorting
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City as a team
Spatial Sorting



The model

• J locations (cities) j ∈ J = {1, ..., J}

• Fixed amount of land (housing) Hj



Citizens

• Citizens (workers) with heterogenous skills xi

• Preferences over consumption and housing (price p):

u(c, h) = c1−αhα

• Worker mobility ⇒ utility equalization across cities:

u(cij , hij) = u(cij ′ , hij ′), ∀j ′ 6= j



Technology

• Cities differ exogenously in TFP Aj

• Representative firm in city j produces

AjF (m1j , ...,mIj)

mij : employment level of skill i ; given wages wij



Technology: Nested CES
3 skill types ⇒ 5 configurations

0. Benchmark CES:

AjF = Aj

(
mγ

1jy1 + mγ
2jy2 + mγ

3jy3

)β
γ ∈ [0, 1], β > 0

1. Extreme-Skill Complementarity

AjF = Aj

[
mγ

2jy2 + (m1j
γy1 + m3j

γy3)λ
]β

A. λ > 1: skills 1 and 3 are (relative) complements;
B. λ < 1: skills 1 and 3 are (relative) substitutes;
C. λ = 1: CES

2. Top-Skill Complementarity

AjF = Aj

[
mγ

1jy1 + (m2j
γy2 + m3j

γy3)λ
]β
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Market clearing

• Housing market:
∑I

i=1 hijmij = Hj

• Labour market:
∑J

j=1 mij = Mi (Mi : total # of skill i)

• City population: Sj =
∑I

i=1 mij

• Two types of cities, C1,C2 of each type



Citizen’s problem

• Optimal consumption

c?ij = (1− α)wij and h?ij = α
wij

pj

• Indirect utility function

Ui = αα (1− α)1−α wij

pαj

⇒ From mobility, utility equalization:

wi1

pα1
=

wi2

pα2



Main Results

Theorem 1. City Size and TFP

The more productive city is larger, S1 > S2

Theorem 2. Extreme-Skill Complementarity and Thick Tails

The skill distribution in the larger city has thicker tails

Theorem 3. Top-Skill Complementarity and FOSD

The skill distribution in the larger city first-order stoch. dominates
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Main Results
5 technologies → 5 distributions

1. Extreme-Skill Complementarity ⇒ thick tails

2. Extreme-Skill Substitutability ⇒ thin tails

3. Top-Skill Complementarity ⇒ FOSD of big cities

4. Top-Skill Substitutability ⇒ FOSD of small cities

5. Constant Elasticity (CES) ⇒ identical distributions



Empirical evidence

• Use theory to obtain a measure for skills

Ui = αα (1− α)1−α wij

pαj

• Need to observe:

- wage distribution wij by city

- housing price level pj

- budget share of housing α
α̂ = 0.24 from Davis and Ortalo-Magné (RED 2010)
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Wages
CPS 2009
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population < 1m > 2.5m
10th percentile: pop < 1m = 5.93, pop > 2.5m = 5.99, diff = 0.065*** (0.007)
90th percentile: pop < 1m = 7.36, pop > 2.5m = 7.56, diff = 0.198*** (0.007)
Kurtosis (H0: =3): pop < 1m = 2.66***, pop > 2.5m = 2.37***
Wage data: cps 2009, obs pop < 1m = 25726, obs pop > 2.5m = 34999
Dep. var.: lwage = = log(wage)
 1 Nov 2012, 22:20:09



Housing prices

• American Community Survey (ACS) 2009

• Rental prices (robust: sales)

• Hedonic price schedule: to obtain housing price index

⇒ Skill measure: wi
pαi



Skills and city size
Skill measure: wi

pαi
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population < 1m > 2.5m
10th percentile: pop < 1m = 5.44, pop > 2.5m = 5.36, diff = -0.074*** (0.006)
90th percentile: pop < 1m = 6.86, pop > 2.5m = 6.99, diff = 0.132*** (0.009)
Kurtosis (H0: =3): pop < 1m = 2.66***, pop > 2.5m = 2.38***
Wage data: cps 2009, obs pop < 1m = 25584, obs pop > 2.5m = 34999
Dep. var.: lutility20 = Skill: cbsa rentindex (ACS 2009)
 3 Jan 2013, 20:58:00



Skills and city size

1. Constant mean: housing cost increases 4 × faster than wages

⇒ 1.1690.24 = 1.038 ≈ 1.042

2. Variance increases in city size

∴ Urban Wage Premium: not spatial sorting, but housing prices

∴ Skill distribution thick tails → extreme-skill complementarity

AjF = Aj

[
mγ

2jy2 + (m1j
γy1 + m3j

γy3)λ
]β
, λ > 1

→ high skilled workers need low-skilled services for production
• administrative/sales help
• household help and child care
• food services, restaurants,...



Skills and city size

1. Constant mean: housing cost increases 4 × faster than wages

⇒ 1.1690.24 = 1.038 ≈ 1.042

2. Variance increases in city size

∴ Urban Wage Premium: not spatial sorting, but housing prices

∴ Skill distribution thick tails → extreme-skill complementarity

AjF = Aj

[
mγ

2jy2 + (m1j
γy1 + m3j

γy3)λ
]β
, λ > 1

→ high skilled workers need low-skilled services for production
• administrative/sales help
• household help and child care
• food services, restaurants,...



Skills and city size

1. Constant mean: housing cost increases 4 × faster than wages

⇒ 1.1690.24 = 1.038 ≈ 1.042

2. Variance increases in city size

∴ Urban Wage Premium: not spatial sorting, but housing prices

∴ Skill distribution thick tails → extreme-skill complementarity

AjF = Aj

[
mγ

2jy2 + (m1j
γy1 + m3j

γy3)λ
]β
, λ > 1

→ high skilled workers need low-skilled services for production
• administrative/sales help
• household help and child care
• food services, restaurants,...



Robustness: Observables

• Our measure of skills: price based (wages and housing price)

• Includes everything: observables and unobservables

• 2/3 of wages: unobservables (non-cognitive skills,...)

→ Thick tails also for observables?



Education: A Direct Measure of Skill
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population < 1m > 2.5m
10th percentile: pop < 1m = -0.61, pop > 2.5m = -0.65, diff = -0.046*** (0.007)
90th percentile: pop < 1m = 0.64, pop > 2.5m = 0.67, diff = 0.032*** (0.008)
Kurtosis (H0: =3): pop < 1m = 2.99, pop > 2.5m = 2.92***
Wage data: cps 2009, obs pop < 1m = 25584, obs pop > 2.5m = 34999
Dep. var.: lresid2utility20grade92 = Residual Skill(utility20), not predicted by grade92
 6 Jan 2013, 23:12:42



Occupation
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residual skill, controlled for occupation

population < 1m > 2.5m
10th percentile: pop < 1m = -0.55, pop > 2.5m = -0.59, diff = -0.042*** (0.006)
90th percentile: pop < 1m = 0.56, pop > 2.5m = 0.60, diff = 0.040*** (0.007)
Kurtosis (H0: =3): pop < 1m = 3.48***, pop > 2.5m = 3.32***
Wage data: cps 2009, obs pop < 1m = 25584, obs pop > 2.5m = 34999
Dep. var.: lresid2utility20occ00 = Residual Skill(utility20), not predicted by occ00
 7 Jan 2013, 11:46:13



Industrial Composition
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population < 1m > 2.5m
10th percentile: pop < 1m = -0.63, pop > 2.5m = -0.69, diff = -0.053*** (0.006)
90th percentile: pop < 1m = 0.66, pop > 2.5m = 0.74, diff = 0.074*** (0.008)
Kurtosis (H0: =3): pop < 1m = 3.00, pop > 2.5m = 2.71***
Wage data: cps 2009, obs pop < 1m = 25584, obs pop > 2.5m = 34999
Dep. var.: lresid2utility20ind02 = Residual Skill(utility20), not predicted by ind02
 7 Jan 2013, 11:46:39



Migration

Foreign Born Natives
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population < 1m > 2.5m
10th percentile: pop < 1m = 5.23, pop > 2.5m = 5.14, diff = -0.085*** (0.017)
90th percentile: pop < 1m = 6.61, pop > 2.5m = 6.70, diff = 0.083** (0.046)
Kurtosis (H0: =3): pop < 1m = 3.11, pop > 2.5m = 2.85**
Wage data: cps 2009, obs pop < 1m = 1371, obs pop > 2.5m = 4402
Dep. var.: lutility20 = Skill: cbsa rentindex (ACS 2009)
 3 Jan 2013, 20:59:33
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population < 1m > 2.5m
10th percentile: pop < 1m = 5.47, pop > 2.5m = 5.45, diff = -0.014** (0.007)
90th percentile: pop < 1m = 6.87, pop > 2.5m = 7.02, diff = 0.151*** (0.010)
Kurtosis (H0: =3): pop < 1m = 2.68***, pop > 2.5m = 2.44***
Wage data: cps 2009, obs pop < 1m = 24213, obs pop > 2.5m = 30597
Dep. var.: lutility20 = Skill: cbsa rentindex (ACS 2009)
 3 Jan 2013, 20:59:56



Age
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population < 1m > 2.5m
10th percentile: pop < 1m = 5.32, pop > 2.5m = 5.27, diff = -0.051*** (0.012)
90th percentile: pop < 1m = 6.48, pop > 2.5m = 6.57, diff = 0.090*** (0.018)
Kurtosis (H0: =3): pop < 1m = 3.29***, pop > 2.5m = 2.87**
Wage data: cps 2009, obs pop < 1m = 4806, obs pop > 2.5m = 6591
Dep. var.: lutility20 = Skill: cbsa rentindex (ACS 2009)
 3 Jan 2013, 21:00:13
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population < 1m > 2.5m
10th percentile: pop < 1m = 5.48, pop > 2.5m = 5.38, diff = -0.092*** (0.014)
90th percentile: pop < 1m = 6.84, pop > 2.5m = 6.97, diff = 0.131*** (0.019)
Kurtosis (H0: =3): pop < 1m = 2.72***, pop > 2.5m = 2.43***
Wage data: cps 2009, obs pop < 1m = 5902, obs pop > 2.5m = 8667
Dep. var.: lutility20 = Skill: cbsa rentindex (ACS 2009)
 3 Jan 2013, 21:00:34
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population < 1m > 2.5m
10th percentile: pop < 1m = 5.51, pop > 2.5m = 5.45, diff = -0.057*** (0.014)
90th percentile: pop < 1m = 6.95, pop > 2.5m = 7.11, diff = 0.158*** (0.018)
Kurtosis (H0: =3): pop < 1m = 2.59***, pop > 2.5m = 2.29***
Wage data: cps 2009, obs pop < 1m = 6709, obs pop > 2.5m = 9231
Dep. var.: lutility20 = Skill: cbsa rentindex (ACS 2009)
 3 Jan 2013, 21:00:47
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population < 1m > 2.5m
10th percentile: pop < 1m = 5.53, pop > 2.5m = 5.45, diff = -0.073*** (0.015)
90th percentile: pop < 1m = 6.99, pop > 2.5m = 7.09, diff = 0.101*** (0.019)
Kurtosis (H0: =3): pop < 1m = 2.55***, pop > 2.5m = 2.36***
Wage data: cps 2009, obs pop < 1m = 5895, obs pop > 2.5m = 7487
Dep. var.: lutility20 = Skill: cbsa rentindex (ACS 2009)
 3 Jan 2013, 21:01:05



Decomposing the skill distributions
Small vs. big cities

10% Quantile 90% Quantile
Observed Quantiles:
- Large cities 5.365 (0.004) *** 6.994 (0.006) ***
- Small cities 5.439 (0.005) *** 6.862 (0.007) ***
- Difference -0.074 (0.006) *** 0.132 (0.009) ***
Firpo, Fortin, Lemieux (2009)
Predicted Quantiles:
- Large cities 5.387 (0.005) *** 7.022 (0.005) ***
- Small cities 5.454 (0.004) *** 6.878 (0.008) ***
- Difference -0.068 (0.007) *** 0.144 (0.009) ***
Explained by observables:
- Education (16 categories) 0.003 (0.002) ** 0.052 (0.002) ***
- Occupation (22 categories) 0.004 (0.002) * 0.025 (0.003) ***
- Industry (51 categories) -0.001 (0.002) 0.013 (0.002) ***
- Race (4 groups) -0.004 (0.001) *** -0.015 (0.001) ***
- Sex -0.001 (0.001) * -0.002 (0.001) *
- Foreign born -0.020 (0.002) *** -0.004 (0.001) ***
- Age (2nd order polynomial) 0.000 (0.001) -0.002 (0.001) *
Total explained by observables -0.018 (0.004) *** 0.067 (0.005) ***
Not explained by observables -0.049 (0.006) *** 0.077 (0.008) ***
Chernozhukov, Fernández-Val, Melly (2012)
Predicted Quantile difference -0.068 (0.006) 0.113 (0.009)
Explained by observables -0.019 (0.004) 0.064 (0.005)
Not explained by observables -0.050 (0.007) 0.049 (0.007)



Sorting within Cities
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Sorting within Cities
Detroit
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Outline

I Zipf’s and Gibrat’s law

II Spatial Sorting

III Taxation



Income Taxation in Local Labor Markets

• Federal Taxes affect same skill workers differentially in cities:
• Urban Wage Premium
• Progressive Taxation

• Average tax rate: 3% points difference at median:

Population Wage level Avg. Tax Rate

New York 19 million 1.22 26.5%
Janesville, WI 160,000 1.00 23.5%

• Due to mobility: no redistribution! Same skills, same utility

• Policy Question: what is optimal spatial taxation policy?
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Model

• J cities, with TFP Aj ; Identical agents; Output: Aj l
γ
j

• Amenities: εj → u(c , h) = (1 + εj)c1−αhα

• Mobility: u(cj , hj) = u(cj ′ , hj ′), ∀j , j ′

• Tax schedule
w̃j = λw 1−τ

j

• average tax rate: λw−τj ;

• marginal tax rate λ(1− τ)w−τj
• τ = 0: proportional; τ > 0: progressive; τ < 0: regressive
• US, estimated τ ≈ 0.12



Empirical Results
Parametrization

• Production: γ = 1 output Aj lj

• Tax schedule: τ = 0.12, λ = 0.752 (OECD calculator)

• Housing Exp. 24% (Davis,Ortalo-Magné, 2009)
⇒ α = 0.24

λ = 0.319



Optimal Tax Schedule?

• TFP from average wages and labor force:

Aj =
wj l

1−γ
j

γ
, ∀j .

• Amenities from mobility (utility equalization):

1 + εj =
lαj w

(1−α)(1−τUS )
1

lα1 w
(1−α)(1−τUS )
j

• Revenue neutrality → fixes λ

⇒ ∀τ , new lj , uj : search grid for τ that maximizes u
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Optimal Tax Schedule
τ? = 9%
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Tax Schedules
Actual vs. Optimal
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Simulation
Change in Labor Force – Productivity
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Simulation
Change in Labor Force – Amenities
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Simulation
Change in After-tax Wages
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Simulation
Change in Housing Prices
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Outcomes for Selected Cities

MSA A ε ∆l %∆p %∆c %∆h
Highest A

Bridgeport-Stamford-Norwalk, CT 1.38 -0.16 1.62 2.39 0.76 -1.60
San Jose-Sunnyvale-Santa Clara, CA 1.36 0.14 1.55 2.28 0.72 -1.52
San Francisco-Oakland-Fremont, CA 1.35 0.44 1.52 2.24 0.71 -1.50

Lowest A
Brownsville-Harlingen, TX 0.53 0.00 -2.97 -4.32 -1.40 3.06
Amarillo, TX 0.49 -0.02 -3.31 -4.82 -1.56 3.42
Bowling Green, KY 0.46 -0.26 -3.65 -5.31 -1.72 3.79

Highest ε
New York-Northern New Jersey-Long Island 1.17 1.45 0.83 1.22 0.39 -0.82
Los Angeles-Long Beach-Santa Ana, CA 1.02 1.37 0.16 0.24 0.08 -0.16
Chicago-Naperville-Joliet, IL-IN-WI 1.06 1.07 0.35 0.52 0.17 -0.35

Lowest ε
Saginaw-Saginaw Township North, MI 1.17 -0.46 0.81 1.19 0.38 -0.80
Athens-Clark County, GA 1.04 -0.53 0.27 0.40 0.13 -0.27
Ocean City, NJ 1.12 -0.63 0.62 0.92 0.29 -0.62



Simulation
c/h substitution
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Aggregate Outcomes
α = 0.319, γ = 1, τ? = 0.067

Outcomes %∆

Output gain 1.02
Population in 5 largest cities 0.59
Average housing prices 1.25



Sensitivity

α = 0.24, γ = 1 α = 0.3191, γ = 1.2
τ? = −0.0082 τ? = −0.0834

Outcomes %∆ %∆
Output gain 8.86 20.30
Population in 5 largest cities 4.91 9.63
Average housing prices 10.36 23.39



Concluding Remarks
Economics and the City

1. Zipf’s law and Gibrat’s law
• Puzzle resolved

2. There is Spatial Sorting

• Thick tails → bigger inequality in big cities
• Extreme-skill compl.: Urban wage premium not due to skills
→ increasing over time + urbanization ↑ ⇒ inequality ↑

3. Federal Income Taxation does affect local labor markets

• Effect on location decisions: big cities are too small
• Optimal level of taxation: progressive, but city-specific



Concluding Remarks
Economics and the City

1. Zipf’s law and Gibrat’s law
• Puzzle resolved

2. There is Spatial Sorting

• Thick tails → bigger inequality in big cities
• Extreme-skill compl.: Urban wage premium not due to skills
→ increasing over time + urbanization ↑ ⇒ inequality ↑

3. Federal Income Taxation does affect local labor markets

• Effect on location decisions: big cities are too small
• Optimal level of taxation: progressive, but city-specific



Concluding Remarks
Economics and the City

1. Zipf’s law and Gibrat’s law
• Puzzle resolved

2. There is Spatial Sorting

• Thick tails → bigger inequality in big cities
• Extreme-skill compl.: Urban wage premium not due to skills
→ increasing over time + urbanization ↑ ⇒ inequality ↑

3. Federal Income Taxation does affect local labor markets

• Effect on location decisions: big cities are too small
• Optimal level of taxation: progressive, but city-specific



Economics and the City

Jan Eeckhout†

†Barcelona GSE-UPF

Bojos per l’Economia
31 January, 2015



Green Growth in Cities

• Cities: dense, dirty, and polluted,...

• Yet, green

• Large cities are more productive: urban wage premium =
productivity premium
Double city size and output grows by 4%

• But more expensive to live: elasticity wrt housing prices: 16%

• Large cities are more dense: more people in same space
• Less consumption of energy
• Less production of waste
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• Yet, green
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• But more expensive to live: elasticity wrt housing prices: 16%

• Large cities are more dense: more people in same space
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Kleiber’s law
Kleiber (1947)



Kleiber’s law

• Energy consumption (metabolic rate) of animals and plants
relates to their mass

q ∼ M
3
4

q: metabolic rate; M body mass

• Log-linear relationship

• Cat 100 heavier than mouse, would use 31 times energy

• For plants the exponent is close to 1



From Biology to economics

• Energy efficiency: consumption of energy; production of waste

• But: mass is not size of the city, but economic productivity

• Economic productivity is correlated with size (Urban Wage
Premium)



Urban Wage Premium
UK Data
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Urban Energy Premium
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Urban Energy Premium
Breakdown By Source

Table: Energy Demand by Source

Household Transport Industrial Total
33.9% 28.0% 38.1% 100%



Urban Energy Premium
Breakdown By Source
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Urban Energy Premium
Why?

• Owen, David, Green Metropolis: Why Living Smaller, Living
Closer, and Driving Less Are the Keys to Sustainability, 2009.

• Glaeser, Edward, Triumph of the City, 2011

• Energy Savings:

1. Live in smaller space: less energy
2. Apartments (vs. stand-alone buildings): more energy efficient
3. Transportation: more efficient mass transportation (vs. car),

walking, bike,...



Urban Waste Premium
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Urban Waste Premium
Breakdown By Source

Table: Waste Supply by Source

Household Non-household Total
Recycled 35.1% 3.3% 38.4%
Non-recycled 54.1% 7.5% 61.6%
Total 89.2% 10.8% 100%



Urban Waste Premium
Breakdown By Source
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Urban Waste Premium
Why?

• Housing: small space (no garages):
• do not collect junk
• buy less durables (furniture,...)
• do not buy outdoors durables



Ranking Cities
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A Policy Experiment
City-Specific Taxation

• From analysis on taxation results:

• Progressive taxation keeps workers from productive cities

• Productive cities are also clean

⇒ City-specific tax will:

1. Increase population of big cities
2. Increase productivity
3. Shift people to cleaner living



A Policy Experiment
City-Specific Taxation

Aggregate growth: −.745%
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A Policy Experiment
City-Specific Taxation

Aggregate growth: −.756%
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