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Abstract

In the last decades, there has been a marked decline in the job flows to and from unemployment

and between employment. We ask whether and how technological change can account for his secular

decline in labor market dynamism. We propose a theory that focuses on the determinants of tech-

nology broadly defined: 1. the complementarity between worker skill and firm productivity; and 2.

the volatility in productivity shocks; and 3. search frictions. We derive job flows in a sorting model

with search frictions and endogenous search effort both on and off the job, as well as shocks that lead

to mismatch. We quantify our model using the US data and find an increase in the complementarity

between labor and technology, a decline in the frequency and volatility of productivity shocks, and a

decline in the match efficiency as well as an increase in the search costs. The changing nature of these

features of the technology contribute to the secular decline in labor market dynamism.
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1 Introduction

The decline in labor market dynamism in the last decades is without doubt the most striking develop-

ment in the US labor market. The transition of workers between unemployment and employment, and

between jobs now is substantially lower than it was a few decades ago. The Current Population Survey

(CPS) that is the basis for the calculation of the economy’s unemployment rate shows that the job to job

transitions in 1996 were 50% higher than they are in 2016, while the transitions between unemployment

and jobs in both directions were each about 25% higher.1 This decline in labor market dynamism has

important implications for welfare and has been linked to the decline in startups of new businesses, the

decline in mobility up the job ladder, and the decrease in migration rates.

Since the phenomenon of declining labor market dynamism was first documented, several potential

explanations have been put forward. The most notable explanations are those based on compositional

changes. There has been a substantial demographic change due to an aging population – not least due

to the baby boom generation moving from young workers in the 1980s to older workers now. Since

older workers have lower labor market dynamics than younger workers (see for example Jovanovic

(1979)), a higher proportion of older workers implies that the average labor dynamism is lower (see for

example Fallick et al. (2010) and Engbom (2017)). Similarly, a shift in the skill composition towards a

more educated work force also leads to a decrease in average labor market dynamism because the high

skilled switch jobs less often (EE) and they separate jobs at a lower rate (EU) than the low skilled (though

job finding rates (UE) are similar across skill groups). The composition shift of a structurally changing

economy with an increasing share of services and a decreasing share of manufacturing (or the rise of the

retail sector) could also affect the average job flows. While each of these explanations help us understand

some of this remarkable development, Hyatt and Spletzer (2013) find that these composition shifts can

explain no more than 30%. and Molloy et al. (2016)

In this paper, we investigate the role of technological change in explaining the decline in labor market

dynamism. In particular, we focus on the evolution of 1. complementarity between worker ability and

job productivity, 2. volatility in the productivity process, and 3. adjustment costs (directed search fric-

tions). To that end, we build a theory of the unemployment due to labor market frictions that builds on

Garibaldi, Moen, and Sommervoll (2016) and that incorporates sorting and on-the-job search, and where

the transitions are determined through individual choices: through search intensity or the decision to

terminate a match. The model has three key features. First, there is two-sided heterogeneity and sort-

1See Figure 2 below. While different data sources indicate some variation in the magnitudes of the change over time, all
agree that there is a marked decline (see for example Moscarini and Postel-Vinay (2017) who analyze data from the Survey
of Income and Program Participation (SIPP) instead of CPS. Moreover, this pattern of declining job flows is robust across
geography (States), industry, firm size, firm age, demographics,...
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ing between workers and firms. Second, stochastic productivity generates mismatch and endogenous

separations (EE and EU). Third, search intensity of workers determines UE and EE flows. This setup re-

sults in stochastic sorting with Beckerian assortative matching (Becker (1973)) where the match surplus

is stochastic (see Chade and Eeckhout (2017)) and where separations are endogenous.

Because of sorting and technology shocks, mismatched workers determine the rate at which they

switch jobs. They search more intensely when the extent of mismatch is larger, or they terminate the

match altogether if the mismatch between their ability and the job is too big. Therefore both sorting and

the volatility of the shocks play a role. The larger the complementarity between job productivity and

worker ability, the higher the opportunity cost of mismatch. And the higher the volatility of shocks, the

more likely a worker is mismatched. Volatility of shocks and complementarity thus affect the value of

being mismatched and as a result, both determine the worker’s response in search intensity or in their

separation decision. But also the search technology plays a role. The match efficiency, the rate at which

workers find a job, determines how intensely workers search, and so does the cos of job search.

Our main empirical findings are as follows. 1. We find an increase in complementarities between

labor and technology by 30%. 2. We find that the frequency and variance of the shock process is declining

sharply. 3. We find that the match efficiency is declining substantially by 24% across all skill types. This is

consistent with Hall and Schulhofer-Wohl (2018) who find a decline in the match efficiency from the 2001

to 2013. They also find that the composition of the unemployed shifted dramatically towards groups

with lower matching efficiency. 4. We find that the cost of search has increased by 47%.2 Quantitatively,

each of these components contribute to the secular decline in labor market dynamism. In addition, we

find that UE rate across wages is flat. This fact was first documented by Mueller (2017), namely that the

average and cyclicality of job findings tend to be very similar across wage groups. This fact is a challenge

to match for models with ex ante worker heterogeneity, and our model does well matching this fact.

Literature. As we mention above, there are alternative explanations for the decline in labor market

dynamics. The most obvious ones are based on compositional changes: The first is a demographic

change due to an aging population – not least due to the baby boom generation moving from young

workers in the 1980s to older workers now. Since older workers have lower labor market dynamics than

younger worker (see for example Jovanovic (1979)), a higher proportion of older workers implies that

the average labor dynamism is lower (see for example Fallick, Fleischman, and Pingle (2010); Engbom

(2017)). Similarly, a shift in the skill composition with a more educated work force also leads to a decrease

in the average labor market dynamism because the high skilled switch jobs less often (EE) and they

2This is consistent with the findings of Molloy et al. (2016). They suggest that a decline in social trust, which may has
increased the cost to job searchers or makes firms and workers more risk averse, could be behind the rising search cost and the
resulting decline in labor market dynamism.
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separate jobs at a lower rate (EU) than the low skilled (though job finding rates (UE) are similar across

skill groups). And structural change with a shift away from production in agriculture and manufacturing

towards services has profoundly changed the demand for jobs, which has implications for job flows.

However, flows in services are higher, not lower than manufacturing, so adjusting for the composition

due to structural change would suggest a rise in labor market dynamism instead of a decline. Another

force that can affect the flow is the decline in union coverage. However, this would have lead to a rise

in dynamism as union jobs tend to have longer duration. Putting several of theses forces together, Hyatt

and Spletzer (2013) find that composition shifts can explain no more than 30%.

Dent, Karahan, Pugsley, and Şahin (2016); Decker, Haltiwanger, Jarmin, and Miranda (2014, 2016)

document a decline in entrepreneurship with fewer new startup firms, and link this to the decline in

labor market dynamism. This work also points to policy changes such as the rise in the share of workers

covered by licensing agreements that lead to a decrease in worker competition and hence dynamism.

Similarly with the decline of employment at will. An alternative explanation that can rationalize the

decline in entrepreneurship and startups is the rise in market power by dominant firms (see De Loecker

et al. (2020, 2021)). In the presence of market power, passthrough of shocks is incomplete, which leads

to lower entry of new firms and to lower reallocation rates of workers across firms.

Our model can be interpreted as a framework that allows for the identification of complementari-

ties in production. Initially it was thought that complementarities could be measured from using fixed

effects wage regressions as in Abowd et al. (1999). However, in a labor market with search frictions

and sorting, wages are not monotonic in firm productivities which renders the fixed effect regression

in Abowd et al. (1999) biased. While output is higher in more productive firms, a low ability worker

receives a lower wage than they would get in a less productive firm because the outside option of the

high productivity firm is higher due to complementarities. While Eeckhout and Kircher (2011) show

that identification of the magnitude of the complementarity is possible with wage data only, typically

information on job transitions is needed to also identify the sign of sorting (Bonhomme, Lamadon, and

Manresa (2015); Lopes de Melo (2018); Borovičková and Shimer (2017); Hagedorn, Law, and Manovskii

(2017)). Not only are wage non-monotonic in the presence of search which complicates the identification,

wages are typically indeterminate.3 Equilibrium pins down the utility – be it through outside matching

outside offers with random search, or through firms posting discounted utility streams – but not the

wage. Hence there are many wage schedules that are consistent with the same equilibrium allocation,

even if that allocation is unique. Relying therefore on wages that are indeterminate is problematic for

3Especially in search models with on-the-job search, whether search is random as in Postel-Vinay and Robin (2002) and Lise
and Robin (2017) or directed as in ours. Search intensity can also give rise to cyclical fluctuations due to coordination frictions
(Eeckhout and Lindenlaub (2019)). Though our focus is on the secular trend in job flows, there is ample cyclical variation, see
Carillo-Tudela and Visschers (2023); Chodorow-Reich and Wieland (2020).
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the identification of complementarities when there is sorting. To that end, we rely on a model that is

exclusively identified from job flows and not wages.

2 The Model

We develop a directed search model with two-sided heterogeneity, stochastic types, on-the-job search

and endogenous search intensity. We need all of the ingredients to generate stochastic sorting, endoge-

nous UE, EE, UE flows and a distribution of match qualities.

Agents and Technology. Time is continuous, t ∈ R+. There is a measure one of risk neutral workers,

each with a type x ∈ X . A worker can be in three possible states, either she is unemployed searching

for a job, or she is employed not searching, or she is employed searching on the job. As a result, the

space of the individual state ξ can be defined as the set Ξ = Y ∪ {−1}. Here we abuse the notation by

allowing ξ = −1 if the worker is unemployed, and if the worker is employed, ξ ∈ Y is the type of the

firm currently matched with the worker. The flow utility from being unemployed is b(x) and the flow

utility from being employed is the wage w. Workers who decide to search, whether while unemployed

or employed, choose the intensity λ at a cost cλ(λ).

There is a large measure of potential jobs (firms), all of which are risk neutral and ex ante identical.

Firms can pay a flow cost k > 0 to open a vacancy. After opening the vacancy, firms can freely choose

type y with operational cost cy(y). In other words, a firm of type y that is matched with a worker of type

x produces output f (x, y)− cy(y), where f (x, y) is the production function. If firms stay inactive, their

payoff is zero.

An important component of the technology are the shocks to worker and firm types. Given time is

continuous, we model the arrival of a shock by the Poisson rate γ, in which case there is a new realization

of the pair x′, y′. We allow this shock process to be as general as possible. The shock is drawn from the

distribution G(x′, y′|x, y) with density g(x′, y′|x, y). We allow for a very general distribution that allows

for drift (Ex′G(x′, y′|x, y) ≥ x) to capture human capital accumulation as well as dependence of the

process on x.

Market Frictions. Search is directed. Firms post a wage contract consisting an initial promised utility

to the worker and all possible continuation payoffs upon every contingency, observed by all workers.

Workers then choose which firm (and wage contract) to direct their application to. Due to the nature

of directed search, the market is segmented by types x and y, and workers’ states ξ, that is, there is a
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particular market tightness in each submarket. In such a submarket, denote the density of unemployed

workers of type x by u(x) and the density of vacancies of type y by v(y). We define the standard market

tightness by θ̃ = v(y)
u(x) . Denote by Λ the (symmetric) search intensity of all other workers in the submarket.

Because of the endogenous search intensity, what matters for the matching technology is not so much

the number of searchers, but rather the efficiency units of searchers Λu(x). Then we write the argument

of the matching function as v(y)
Λu(x) =

θ̃
Λ .

The stochastic nature of the match formation is modeled by means of a standard matching function m

where the matching rate for a worker with search intensity λ is given by ϕλm
(

θ̃
Λ

)
, where m is increasing,

concave and has constant returns to scale. ϕ is a parameter measuring the matching efficiency, and we

allow ϕ to be different across employed (ϕe) and unemployed (ϕu) workers. The individual search effort

affects the own matching probability through λ, but not the effective market tightness θ̃
Λ which depends

on the aggregate search intensity Λ. In a symmetric equilibrium, we will have λ = Λ. Moreover, the

standard consistency argument implies that the matching rate for a firm is given by q
(

θ̃
Λ

)
= ϕm

(
θ̃
Λ

)
Λ
θ̃

.

Payoffs. We assume that the firms and the workers have the same discount rate ρ. And each worker

exits the market exogenously at rate δ such that the stationary distribution of the workers’ types is not

degenerate. Upon exit, the old worker will be replaced by a new one whose type is drawn from density

f0(x). Therefore, the effective discount rate is r = ρ + δ.

Utilities are perfectly transferable. Define E(x, y) to be the promised value received by a type x

worker from working with a type y firm, and J(x, y) to be the expected profits received by a type y firm

from working with a type x worker. Then the total expected value created by this (x, y) pair is denoted

by S(x, y) = E(x, y) + J(x, y). We further assume that the firm decides whether to fire the worker or not,

and if an employed worker decides to leave the firm, the worker has to pay a penalty P(x, y) to the firm.

P is allowed to be negative, in which case we can interpret it as severance pay.

Value Functions. Due to the stochastic nature of types, there is mismatch and the allocation of matches

is potentially the entire domain X × Y . However, there are two important subsets in the domain. The

first is the allocation that is chosen when a new match is formed, either out of unemployment or from on-

the-job search. This allocation is denoted by y = µ(x, ξ). In principle workers with type x and individual

state ξ will choose to search for type µ(x, ξ) firms. The second subset is the matching set as a subset of

the entire domain X ×Y . The matching set for type x workers is denoted byM(x), which consists of the

set of firm types that are willing to employ type x workers. Moreover, we have to determine the market
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tightness θ̃(x, y, ξ), the individual search intensity λ(x, y, ξ) and the aggregate search intensity Λ(x, y, ξ)

in each submarket.

We first consider the worker’s optimization problem. For an unemployed worker, the worker chooses

which submarket to search and with which search intensity. The characteristics of a submarket (y′, θ̃, Λ)

include firm type y′, market tightness θ̃ and aggregate search intensity Λ. The optimization problem can

be written as:

rU(x) = b(x) + max
ỹ,θ̃,Λ,λ

{
ϕuλm

(
θ̃

Λ

)
[E(x, ỹ)−U(x)]− cλ(λ)

}
. (1)

Similarly, an employed worker’s problem can be written as (given the promised value E(x, y)):

rE(x, y) = w(x, y) + γ
∫ [

ηE(x′, y′) + (1− η)U(x′)− E(x, y)
]

dG(x′, y′|x, y)

+ max
ỹ,θ̃,Λ,λ

{
ϕeλm

(
θ̃

Λ

)
[E(x, ỹ)− E(x, y)]− cλ(λ)

}
, (2)

where η ∈ {0, 1} denotes the firm’s separation decision: the worker is fired if η = 0 and retained

otherwise.

For a matched firm, the firm’s objective is to maximize its expected value subject to the following

promise-keeping constraint. When a firm-worker pair x, y is initially formed, the firm promises the

worker a promised utility of Ē(x, y). Thus, the promise-keeping constraint requires that the worker’s

continuation value upon matching with the firm, E0(x, y), has to satisfy E0(x, y) ≥ Ē(x, y). The firm’s

problem is to design an optimal contract subject to the promise-keeping constraint to maximize its con-

tinuation value upon matching with the worker. Formally, the firm’s problem can be written as:

rJ0(x, y) = max
w,η

f (x, y)− cy(y)− w(x, y) + γ
∫ [

η J(x′, y′)− J(x, y)
]

dG(x′, y′|x, y)

−ϕeλ
?m
(

θ̃?

Λ?

)
J(x, y), (3)

subject to the promise-keeping constraint E0(x, y) ≥ Ē(x, y), and λ?, θ̃? and Λ? are optimal solutions to

(2).

Finally, the value of opening a vacancy is the expected profits of an entering firm. In particular, if
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µ(x, ξ) = y, then this value becomes

V(y) = −k + q
(

θ̃

Λ

)
J(x, y). (4)

Equilibrium. We consider the block-recursive equilibrium (BRE) in our modeled economy. As shown

by Menzio and Shi (2011), all equilibria are block recursive, and hence it is without generality in focusing

on the BRE.

Definition 1 A block-recursive equilibrium consists of a market tightness function θ̃ : X × Y × Ξ → R+, an

aggregate intensity function Λ : X × Y × Ξ → R+, an individual intensity function λ : X × Y × Ξ → R+,

an allocation function µ : X × Ξ → Y , value functions U : X → R, E : X × Y → R, J : X × Y → R,

V : Y → R, and policy functions (w, η) : X × Y → R × {0, 1}. These functions satisfy the following

conditions: (i) the value functions are given by Equations (1)-(4); (ii) the associated policy functions are optimal

solutions to Equations (1)-(4); (iii) V(y) = 0 for all y and λ = Λ.

Conditions (i)− (ii) ensure that in a BRE, the strategies of each agent are optimal given the strate-

gies of the other agents. Condition (iii) is the free entry condition: every entering firm receives a zero

expected profit. The nice property of a BRE is that the agent’s value and policy functions do not directly

depend on the aggregate distribution of the individual states. This makes it much simpler to solve a

BRE.

Planner’s Solution. From the planner’s point of view, S(x, y) = J(x, y) + E(x, y) measures the surplus

of a vacant job at firm y that is filled by a worker x:

rS(x, y) = f (x, y)− cy(y) + γ
∫ [

max{S(x′, y′), U(x′)} − S(x, y)
]

dG(x′, y′|x, y)

+max
λ,θ,ỹ
{ϕeλm (θ) [S(x, ỹ)− S(x, y)]− cλ(λ)− kλθ} (5)

where the flow of output is f (x, y)− cy(y), and at rate γ a shock arrives that generates a new set of types

x′, y′, drawn from G(x′, y′|x, y). This involves an optimization decision, where the match is sustained

whenever S(x′, y′) ≥ U(x′) and is destroyed otherwise to move into unemployment. During the match,

the worker also continuously searches on the job. She chooses a search intensity λ at cost cλ as well
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as a submarket with effective tightness θ where to search at cost kλθ.4 Obviously, the choice of ỹ is

always to maximize S(x, ỹ) and hence the worker always searches for her best match. When a new

match is formed, the search intensity and the effective tightness are both zero as the firm-worker pair

has achieved its best match, i.e., S(x, y) ≥ S(x, y′) for all y′.

Similarly, U(x) measures the surplus of an unemployed worker x:

rU(x) = b(x) + max
λ,θ,ỹ
{ϕuλm (θ) [S(x, ỹ)−U(x)]− cλ(λ)− kλθ} . (6)

The planner’s values (5) and (6) are the same as the decentralized equilibrium values in equations (10)

and (11)

Steady State Distributions. The BRE is fully solved independent of the distribution of individual

states. Now, given the BRE, we can further characterize the steady state distribution of individual states.

Let u(x) denote the density of unemployed workers with type x, ψ(x) the density of perfectly matched

workers with type x, and φ(x, y) the density of mismatched worker-firm pair (x, y). Then the stationary

densities should satisfy:

(γ + δ)ψ(x) =ϕuλum (θu) u(x) +
∫

φ(x, y)ϕeλym
(
θy
)

dy (7)

(ϕuλum (θu) + δ)u(x) =γ
∫ ∫

y/∈M(x)
g(x, y|x̃, ỹ)dxdyφ(x̃, ỹ)dx̃dỹ

+ γ
∫ ∫

y/∈M(x)
g(x, y|x̃, µ(x̃))dxdyψ(x̃)dx̃ + δ f0(x) (8)(

γ + δ + ϕeλym
(
θy
))

φ(x, y) =γ
∫

g(x, y|x̃, ỹ)φ(x̃, ỹ)dx̃dỹ + γ
∫

g(x, y|x̃, µ(x̃))v(x̃)dx̃. (9)

Equation (7) implies that the flow-out of ψ(x) (due to productivity shock and death) must be the same

as the flow-in (coming from unemployment search and on-the-job search). Equation (8) implies that the

flow-out of u(x) (due to search and death) must be the same as the flow-in (coming from voluntary

separation of the mis-matched workers). Finally, Equation (8) implies that the flow-out of φ(x, y) (due to

search, productivity shock, and death) must be the same as the flow-in (coming from productivity shock

of the other workers).

Illustration of the Mechanism. Figure 1 illustrates the model mechanism. Workers of type x are de-

picted on on the horizontal axis, firms/jobs y are on the vertical axis. Newly matched workers, whether

4Notice that if λ is exogenously given to be one, this model is equivalent to the standard on-the-job directed search models
(e.g., Menzio and Shi (2011) and Li and Weng (2017)).
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Figure 1: Illustration of the Model Mechanism

it is out of unemployment or from on-the-job search, direct their search to a job y that corresponds to the

perfectly sorted allocation µ (as in Eeckhout and Kircher (2010)). Now once they are matched, shocks to

their type leads to mismatch, away from µ. Mismatch in turn induces search by the worker who trades

off the cost of search against the higher wage when better matched. The search intensity λ solves the

optimal choice for this trade off and is plotted to the left of the figure. Search intensity is zero at the

optimal match µ and increases the further away from µ. If a shock to the type leads to mismatch outside

the acceptance region (below y or above y) then worker and firm dissolve the match and the worker

becomes unemployed. The search intensity for all unemployed workers of a given type x is the same.

3 Solution and Results

General Results. We first rewrite the Bellman equations and show existence, then we solve them. Re-

call that we let S(x, y) denote the total expected value created by a (x, y) pair: S(x, y) = E(x, y) + J(x, y).

The next theorem shows that we can characterize the BRE only based on values S(x, y) and U(x).

Proposition 1 In any BRE, there exist values U(x) and S(x, y) satisfying

rU(x) = b(x) + max
λ,θ,ỹ
{ϕuλm (θ) [S(x, ỹ)−U(x)]− cλ(λ)− kλθ} , (10)

and

rS(x, y) = f (x, y)− cy(y) + γ
∫ [

max{S(x′, y′), U(x′)} − S(x, y)
]

dG(x′, y′|x, y)

+max
λ,θ,ỹ
{ϕeλm (θ) [S(x, ỹ)− S(x, y)]− cλ(λ)− kλθ} , (11)
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and where the policy functions λ, θ and µ are optimal solutions to equations (10) and (11), Λ = λ and θ̃ = θλ.

Proof. In Appendix.

As in Menzio and Shi (2011), the BRE is constrained socially efficient. It is not fully efficient because

the workers do not internalize the externality caused by their search intensities. In other words, each

worker chooses the search intensity λ not taking into account that Λ = λ.

We now solve for the Bellman equations. Consider a worker who is searching on the job. Equation (5)

implies that the planner chooses λ, θ, ỹ to maximize the surplus S(x, y). The FOCs for λ, θ and ỹ satisfy:

λ : ϕem (θ) [S(x, ỹ)− S(x, y)] = c′λ + kθ

θ̃ : ϕem′ (θ) [S(x, ỹ)− S(x, y)] = k

ỹ : ϕeλm (θ)
∂S(x, ỹ)

∂ỹ
= 0.

Similarly, the FOCs for an unemployed worker satisfy:

λ : ϕum (θ) [S(x, ỹ)−U(x)] = c′λ + kθ

θ̃ : ϕum′ (θ) [S(x, ỹ)−U(x)] = k

ỹ : ϕuλm (θ)
∂S(x, ỹ)

∂ỹ
= 0.

Observe that for both the employed and unemployed workers, the solution for λ and θ̃ only depends

on the difference S(x, ỹ) − S(x, y) or S(x, ỹ) − U(x). Denote this difference to be ∆, and we therefore

express the solution S to the optimal directed search problem (choosing search intensity and effective

market tightness) as a function Sj(∆) = maxλ,θ
{

ϕjλm (θ)∆− cλ(λ)− kλθ
}

for j = e, u.

The Wage Contract. Firms offer a continuation value of the surplus that is precisely pinned down in

equilibrium. However, the path of a worker’s individual continuation values as well as the worker’s

wage path are not uniquely determined. In fact, there is a continuum of wage contracts that are con-

sistent in equilibrium. Each of those wage contracts offers the same continuation utility when the firm-

worker pair is initially formed, and generates zero continuation value to the firm after the first shock

arrives.

One example of the wage contract is the following incubation contract. After a (x, µ(x)) match is
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initially formed, the firm pays a constant wage

w(x, µ(x)) = f (x, µ(x))− cy(µ(x))− (r + γ)
k
q

,

as long as no shock arrives where q is the equilibrium probability for the firm to be matched with a

worker. This wage guarantees the free entry condition: J(x, µ(x)) = k
q . After the arrival of a shock, the

firm’s continuation value becomes J(x′, y′) = 0 and hence w(x′, y′) = f (x′, y′)− cy(y′).

Specific Results. In what follows, we will derive analytical results on a shock technology that is inde-

pendent of y.

Assumption 1 The shocks are independent of y : G(x′, y′|x).

This simplifies the analysis since the future surplus at the optimal choice of y is independent of y.

It means that once the worker-firm pair (x′, y) is mismatched and a new shock arrives, this new shock

only depends on x′, and not on y. One possible shock technology that satisfies the assumption is that at

a mismatched pair (x′, y), the firm adjust y to match the worker’s type so that y switches to x′. We will

focus on this case in the subsequent analysis, and the implicit assumption is that the firm’s adjustment

occurs with a lag, i.e., y is adjusted to x′ when x′ is shocked again to x′′ (we can similarly analyze the no

lag case that y switches to Ex′′).5 We can then further calculate ∂S(x,ỹ)
∂ỹ from the envelope theorem. As

long as the distribution G(x′, y′|x, y) is not contingent on y as we have assumed, ∂S(x,ỹ)
∂ỹ = 0 is equivalent

to fy(x, ỹ) − c′y(ỹ) = 0. Therefore, the optimal choice ỹ for both the employed and the unemployed

worker in S(x, ỹ) will be exclusively determined by fx(x, y) = c′y(y). The optimal choice ỹ = µ(x, ξ)

hence is independent of the individual state ξ (which is either the current firm y or unemployment), and

only depends on the worker type x.

Since at every new match, the type x worker is matched with the same µ(x) firm, we can use S? to

denote the surplus at this ideal match: S?(x) = S(x, µ(x)). Likewise, let f ?(x) = maxy
[

f (x, y)− cy(y)
]
.

Then we can write S? as:

(r + γ)S?(x) = f ?(x) + γ
∫

max{S(x′, y′), U(x′)}dG(x′, y′|x), (12)

which is just like the general surplus except for the fact that there is no search on the job when matched

to the ideal partner µ(x).

5 When Assumption 1 is not satisfied, we cannot obtain analytical results on the matching pattern, except at the other ex-
treme where shocks only depend on y (see Appendix D.1). For the general case, we attempt to solve the model computationally.
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Denote ∆(x, y) = S?(x)− S(x, y), and we can then rewrite (5) and (12) as:

(r + γ)∆(x, y) = f ?(x)−
[

f (x, y)− cy(y)
]
− Se(∆(x, y)). (13)

Equation (13) is an equation in ∆(x, y) = S?(x) − S(x, y), and hence S?(x) − S(x, y) can be solved

directly from this equation. Similarly, Equation (6) implies that

rU(x) = b(x) + Su [S?(x)−U(x)] . (14)

U(x) can be solved from the above equation for any given S?(x). Therefore, we can express both S(x, y)

and U(x) in terms of S?(x). And to solve S(x, y) and U(x), it is equivalent to solve S?(x) satisfying

Equation (12). The next theorem shows that the solution is always unique.

Proposition 2 Under Assumption 1, the BRE is unique: there exists a unique pair of (S(x, y), U(x)) satisfying

Equations (10) and (11).

Proof. In Appendix.

In the subsequent analysis, we will impose several usual assumptions on the functions f (x, y) and

cy(y).

Assumption 2 (i) cy is an increasing, convex function: c′y > 0 and c′′y ≥ 0; (ii) f is increasing and concave in

each element: fx > 0, fy > 0, fxx < 0 and fyy < 0.

Proposition 3 Under Assumptions 1 and 2, there is positive assortative matching (µ′(x) ≥ 0) if and only if

f (x, y) is supermodular.

Proof. In Appendix.

Proposition 4 Under Assumptions 1 and 2, there exist y(x) ≥ y(x) ≥ 0 such that y ∈ M(x) if and only if

y ∈ [y(x), y(x)].

Proof. In Appendix.

In order to obtain some further analytical results, we now introduce some specific functional form

assumptions that we will also maintain in the simulations below. First, we assume the matching function

is Cobb-Douglas: m(θ) = ϕθα. As a result of this assumption, the search intensity λ and the market
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tightness v
u solve the maximization problems in (10) and (11) such that they always move in the same

direction: if search intensity λ increases (decreases) then market tightness θ also increases (decreases).

Second, we assume the production technology is given by:

f (x, y)− cy(y) = ω
(

xβy1−β − (1− β)y
)
+ (1−ω)βx (15)

= ω

(
xβyη − η

β + η
yβ+η

)
+ (1−ω)

β

β + η
xβ+η

with degree of complementarity ω. The total complementarity is given by the cross-partial and varies

by x, y. We will denote by Ω = ωβ(1− β) since fxy(x, y) = ωβ(1− β)xβ−1y−β. This technology implies

1. that the ideal, frictionless match for all x is the diagonal µ(x) = x; and 2. that by virtue of the

term −ω(1− β)y, an increase in the degree of complementarity ensures that the frictionless allocation is

invariant of ω: f ?(x) = f (x, µ(x))− cy(µ(x)) = βx.

Third, we model shocks by means of the normal distribution with mean (1− κ)x + κ and standard

deviation σ, truncated below at x′ = 0 and above at x′ = 1:6

g(x′|x) ∼ N ((1− κ)x + κ, σ), ∀x ∈ [0, 1], (16)

and where κ ∈ [0, 1] is a measure of the expected growth rate of x. To see this, the expected value of

x′ (the mean of the normal distribution) is determined by (1− κ)x + κ.7 This is a weighted sum of x

and 1, so if κ = 0 this is a martingale and the expected value of x′ is equal to x; instead, if κ = 1 all

workers immediately jump to the highest type x = 1. Then if wage growth for the high skilled is faster,

we require that κH > κL. Note also that with κ 6= 1, then x is increasing at a decreasing rate x: higher

types x have lower growth rates.

Finally, The unemployment benefit is assumed to be a constant fraction of the perfect match x, bx

where b is a positive constant. The cost of search is assumed quadratic: cλ = 1
2 λ2.

Then the system of equations that determines equilibrium is (12), (13), and (14), where we substitute

the technology for (15). Given this setup we obtain the following results on the effect of a change in the

technology (ω, γ, κ, σ) on the equilibrium outcomes ∆S (the gap in the value between the mismatched

and the perfectly matched worker), S? (the value of the perfectly matched worker), λe, λu (the search

intensity of the employed and the unemployed.

Proposition 5 Under Assumptions 1 and 2 and with the technology (15), the comparative statics results of the

6 Observe that this shock technology satisfies Assumption 1 since y′ is assumed to be the same as x.
7Because the normal is truncated, there is no exact expression for the expected value. We do know that the mean is

monotonic in (1− κ)x + κ.
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technology can be summarized as follows:

ω ↑ γ ↑ κ ↑ σ ↑

∆S + − = =

λe + − = =

S? − +/− +/− +/−

λu − +/− +/− +/−

Proof. In Appendix.

The effect of complementarity ω in the production technology is unambiguous: it increases the gap

between the mismatch and the perfect match values (by the setup of the technology), and as a result,

this increases search intensity on the job λe; it decreases value of the perfect match since the mismatch in

anticipation is of lower value, and this in turn decreases the search intensity of the unemployed.

The effect of the arrival rate γ is negative on the gap ∆S and therefore on λe and ambiguous on S?

and therefore also ambiguous on λu. Faster arrival of shocks implies more mismatch and hence lower

∆S. That will lower S?, but S? is also affected by the matching range between unemployment and remain

matched, rendering the effect ambiguous. The ambiguity of effects in general stems from the fact that

the matching range changes in equilibrium, which changes the continuation value.

The effect of the mean old the variance of the shock does not change the mismatch value gap ∆S (and

hence search intensity on the job), where again the effect on S? (and λu) is ambiguous because of the

change in the matching range.

In general, we cannot make any unambiguous predictions about the effect of technological change on

the flow rates (UE, EE, EU). Those are averages integrated over all accepted matches. The reason, again,

is that the range of accepted matches changes with changes in the technology. The impact on flows is

particularly big because the at the boundaries, search intensity is highest (search intensity increases the

further away from the ideal match). Any change in the boundaries has therefore big effects on the flow

rates.

The Labor Share. The labor share of output in this model is given by the wage w in a match (x, y)

divided by the output generated by the match, i.e. Y = ωxβy1−β. Consider first a frictionless model as a

benchmark with output Y and a competitive, frictionless wage. Along the equilibrium allocation x = y|

output is Y = x. Then the wage satisfies the FOC: w′(x) = ωβxβ−1y1−β and with a matching y = x this
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integrates to w(x) = ωβ
∫ x

x x0dx = ωβx. Then the labor share of output is given by:

LS =
ωβx
ωx

= β.

4 Quantitative Exercise

(a) EE flow rate (b) EU flow rate (c) UE flow rate

Figure 2: Data Moments. Detrended using HP filter (smoothing parameter 1600 ×34. Deseasonalized
using the Census Bureau’s X-13 ARIMA.

We now quantitatively analyze the implications of changes in the technology and how these changes

affect the job market flows. Our objective is to solve the steady state equilibrium allocation numerically.

To that end, we solve the values through value iteration and we derive the boundaries of matched and

unemployed worker types. Then we derive the steady state distribution of matched and unmatched

types. The algorithm is described in detail in Appendix C. We do this on a 50 point grid for the types

x and y. We assume that y is uniform on [y, 1]. For f0(x), the distribution of newly born workers, we

use the truncated normal on [0, 1] with mean 0 and variance 0.05. Then once we have solved for the 50

worker and job types, we match the 4 quartiles from the model to the data.

With this numerical solution in hand for a set of parameters, we then estimate the model to match

three moments for each of 4 types (quartiles) in the data: the flow rates UE, EE, and EU.8 The data

moments we pick are those that match the trend in the series between January 1996 and September 2016,

see Figure 2. Our unit of time is one month and we convert the monthly flow rate to instantaneous flow

rates to match the continuous time model.9 The model has 14 parameters. We set 3 of those exogenously,

and we will estimate 11. The estimated parameters are listed in Table 2 below. We have 12 moments and

11 parameters to be estimated. We calculate the steady state of the model to match those moments in

January 1996. We then calculate this again to match those moment in September 2016.

8Implicitly, we also match the unemployment rate u, which is implied by UE, EE, and EU.
9We set EUdata = 1− e−EU .
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Simulation Results. In Table 1 and Figure 3 we report the data moments as well as those from the

estimated Model. We systematically match UE, EE and u very well, but less so EU. Our model tends

to underestimate the EU rate, and this deviation is increasing (from -10% in 1996 to -26% in 2016). This

holds true for the two estimations of the sub economies by skill as well. The heterogeneity may be

due to the the inability of our model to match EU because our underestimate for the high skill workers

decreases while it decreases for the low skill workers.

Table 1: Data Targets and Model Estimates (in %)

1997 2016 % Change 97-16
Data Model %∆ Data Model %∆ Data Model

ueq1 38.78 31.84 -17.90 35.97 27.05 -24.81 -7.25 -15.06
ueq2 38.15 40.01 4.88 34.54 37.03 7.21 -9.46 -7.45
ueq3 35.65 39.68 11.33 33.09 37.13 12.22 -7.18 -6.44
ueq4 41.10 36.03 -12.36 28.96 34.36 18.66 -29.54 -4.61
eeq1 2.96 3.55 19.78 2.08 1.55 -25.41 -29.77 -56.27
eeq2 2.11 2.35 11.61 1.47 1.37 -6.83 -30.25 -41.78
eeq3 1.57 1.47 -6.20 1.30 1.09 -15.75 -17.32 -25.74
eeq4 1.39 0.79 -43.31 1.15 0.72 -37.42 -17.63 -9.07
euq1 1.71 1.29 -24.34 1.29 1.12 -13.54 -24.30 -13.50
euq2 0.90 1.02 12.70 0.61 0.54 -11.12 -32.75 -46.96
euq3 0.53 0.72 36.49 0.49 0.31 -36.48 -7.00 -56.72
euq4 0.39 0.34 -14.28 0.30 0.31 4.96 -24.19 -7.17

Note. For the data, we use the trend of the data over the entire period (1996-2016) to avoid
cyclical and seasonal fluctuations.The 1996 data point corresponds to the trend in January
1996 and the 2016 data point corresponds to the trend in September 2016.

(a) EE flow rate (b) EU flow rate (c) UE flow rate

Figure 3: Data-model Match 1997.

The parameter estimates are reported in Table 2. The parameters are grouped into three categories:

complementarity, shocks and matching technology. The complementarity parameters in the Cobb-Douglas
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(a) EE flow rate (b) EU flow rate (c) UE flow rate

Figure 4: Data-model Match 2016.

technology consist of ω, the multiplicative term, and β, the input share on worker skills. We find an in-

crease in the complementarity through the rise in ω and the input share β.

Table 2: Parameter Estimates

All
1997 2016 %∆

ω Complementarity 5.95 7.73 29.92
β0 Worker share intercept 0.38 0.61 58.77
β1 Worker share slope 0.18 0.37 107.76
σ0 shock var. intercept 0.61 0.17 -72.05
σ1 shock var. slope 0.63 0.27 -57.41
γ0 shock freq. intercept 0.10 0.04 -56.76
γ1 shock freq. slope 0.71 0.34 -51.90
ϕ0 match eff. intercept 15.67 11.85 -24.40
ϕ1 match eff. slope 0.33 0.25 -23.62
c search cost 7.74 11.36 46.64
kk entry cost 17.62 6.40 -63.66

The change in the estimated parameters that pertain to the shocks shows that shocks have become

substantially less frequent (γ), and that the variance (σ) has gone down. Both are measures of the volatil-

ity. The parameters that pertain to the matching technology, entry and search costs and the exogenous

separation rates show a decline in match efficiency (ϕ) and an increase in the search cost (c). The entry

cost for firms (kk) has declined.

To get an idea of the contribution of each individual parameter to the three flow rates and unemploy-

ment, we calculate the elasticity. We start from the benchmark estimation and change one parameter at

a time. We do this by inducing a 10% increase in that parameter, and we calculate the new steady state
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equilibrium. In this new steady state we obtain new flow and unemployment rates. We perform this

exercise in both years, 1997 and 2017. Tables 3 and 4 report the elasticities obtained from that exercise.10

Table 3: Elasticities 1997

σ1 ω γ0 γ1 ϕ0 ϕ1 c kk σ0 β0 β1

ueq1 -0.03 -0.85 -1.45 0.19 9.93 -2.20 -2.42 -4.82 -0.01 -5.58 -0.38
ueq2 0.08 -0.27 -0.75 0.41 8.45 -5.15 -2.06 -4.09 -0.14 -4.16 -0.61
ueq3 0.15 -0.15 -0.41 0.35 8.07 -7.51 -1.97 -3.92 -0.16 -4.10 -0.85
ueq4 0.08 -0.06 -0.17 0.32 8.11 -10.99 -1.98 -3.91 -0.07 -4.04 -1.12
eeq1 -0.66 5.19 3.48 -2.26 5.82 -1.19 -1.70 -3.27 1.05 -3.33 -0.77
eeq2 -2.80 -1.25 4.75 -3.92 4.75 -2.74 -1.54 -2.55 2.27 -0.51 -0.05
eeq3 -2.69 -0.71 4.49 -4.23 7.19 -2.98 -1.20 -2.77 2.32 -0.04 0.00
eeq4 -2.21 0.20 2.95 -7.58 6.71 -6.76 -1.95 -4.03 -0.31 0.26 -0.00
euq1 -0.18 7.73 8.17 -1.27 1.57 -0.03 -0.02 -0.05 0.70 3.35 0.87
euq2 -1.36 11.00 9.11 -3.61 2.30 0.00 -0.00 -0.75 3.87 9.05 2.19
euq3 -5.06 4.73 9.42 -7.92 0.01 0.10 -0.05 -0.55 6.80 0.87 0.08
euq4 -7.05 9.52 10.14 -14.08 -0.06 0.28 -0.06 -0.03 9.38 2.70 0.16

Table 4: Elasticities 2016

σ1 ω γ0 γ1 ϕ0 ϕ1 c kk σ0 β0 β1

ueq1 -0.04 -0.31 -1.61 0.04 10.49 -1.40 -2.53 -5.04 0.23 -13.98 -0.79
ueq2 0.06 -0.18 -0.49 0.09 8.44 -3.64 -2.05 -4.07 -0.37 -10.88 -1.43
ueq3 0.05 -0.23 -0.27 0.08 8.19 -5.64 -1.98 -3.94 -0.24 -10.30 -2.08
ueq4 0.05 -0.13 -0.17 0.08 8.26 -8.01 -1.99 -3.96 -0.17 -10.45 -3.02
eeq1 -0.11 -1.47 5.84 -1.02 4.17 -0.68 -1.30 -2.25 -0.55 -12.88 -1.25
eeq2 -0.84 1.69 5.05 -0.82 5.34 -1.46 -1.28 -2.64 3.69 -2.82 -0.45
eeq3 -1.58 1.78 3.95 -1.83 6.65 -2.54 -1.67 -3.34 4.99 -1.96 -0.02
eeq4 -2.41 5.14 2.64 -1.30 8.44 -4.26 -2.09 -4.17 6.63 0.59 -0.00
euq1 -0.51 9.84 8.76 -0.46 1.38 -0.02 -0.03 -0.64 6.78 13.28 1.27
euq2 -2.06 4.52 9.39 -1.40 0.58 -0.05 -0.04 -0.07 16.08 15.99 1.50
euq3 -0.96 11.15 9.83 -2.76 0.14 -0.02 -0.03 -0.04 8.03 13.94 1.68
euq4 1.99 0.69 9.57 -4.01 -0.01 0.00 -0.38 -0.38 -4.35 1.47 0.49

Because the variables induce changes in the flow rates that go in opposite directions, the decreases

in the flow rates in this model must necessarily come from a combination of parameter changes. For

similar findings, see for example Schaal (2017). The parameters that seem to have the digest impact on

10Read this table as follows. The elasticity of ω on EE of 5.19 means that a 10% increase in ω leads to 51.9% increase in the
EE rate.
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the flows are γ (the frequency of the shocks) and β (the input share of workers skills) with a positive

elasticity on EE that is larger than one. This seems to indicate that an increase in β tends to increase the

flows, as does an increase in γ.

Figure 5: Acceptance Region

We now proceed to illustrating the features of the allocation and properties of the equilibrium with a

number of figures. First, Figure 5 shows the acceptance region in the model which has slightly narrowed

between 1996 and 2016. We observe that due to higher search cost and lower shock frequency and vari-

ance, the acceptance region in 2016 is substantially smaller than in 1997. The decline in the acceptance

region is a key driver of the decline in the flow rates.

In Figure 6 we report 4 plots that pertain to the distribution of workers and they illustrate how the

endogenous distributions have changed over time. The density of employed worker types is unchanged.

The density of perfectly matched worker types has shifted to the left and as a result, the density of

mismatched worker types has shifted to the right. More high worker types are mismatched in 2016 than

in 1997. Finally, the measure of unemployed workers is always lower for the high skilled workers than

the low skilled workers, but there are more low skilled workers who are unemployed in 2016 than in

1997. Even if the average unemployment rate has not changed, the distribution has shifted towards more

unemployed low skill workers.
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(a) Density of employed workers (b) Measure of perfectly matched workers

(c) Density of mismatch workers (d) Measure of unemployed workers

Figure 6: Distribution of Workers.

The changing stationary distributions of types in Figure 6 have implications for the flow rates by

worker skill x which we report in Figure 7. The UE rate has become flatter, decreased for the low skilled

and slightly increased for the high skilled (Figure 7c). The EE rate that is increasing in skill has become

somewhat flatter (Figure 7a), and the EU rate has uniformly shifted down for all skill levels (Figure 7b).

The unemployment rate for the low skilled types x has increased from under 8% to 10% which reflects

the net effect of the different flow rates.
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(a) EE rate (in %) (b) EU rate (in %)

(c) UE rate (in %) (d) Unemployment rate (in %)

Figure 7: Flow and Unemployment Rates.

Finally, Figure 8 illustrates the search intensity for different types. Figure 8a shows that the higher

types search more intensely than the low types, but that search intensity has dropped to half in 2016 com-

pared to 1997. The search intensity of the employed is depicted in Figure 8b. When perfectly matched

(x = µ(x) = y), there is no incentive to search and the search intensity is zero. The further mismatched

and therefore the larger (smaller) y− x, the higher the search intensity. Eventually when unemployed,

the search intensity is independent of the difference because the work is no longer matched to a y. Also

here, the search intensity of the low skilled workers (measured here by the 25th) is lower than that of the

high skilled workers (75th percentiles) and the search intensity has gone down between 1997 and 2016.

This is consistent with the lower flow rates.
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(a) Unemployed Search Intensity (b) Employed Search Intensity

Figure 8: Search Intensity.

5 Concluding Comments

In this paper we have proposed a theory of the labor market with endogenous search intensity, sorting

and directed on-the-job search. Matched workers are subjected to shocks and once mismatched, they

start to search on-the-job to find a better allocation. Because search is directed, they can target the ideal

job. The more mismatched the worker is, the higher the incentives to find the ideal job and the higher

the search intensity. This leads to endogenous flow rates that vary by matched worker-job pairs.

The model generates predictions regarding the match surplus and the search intensity that are con-

sistent with the data. We then quantify the model and estimate the model parameters to study the

determinants of declining business dynamism as evidenced by declining labor market flow rates. We

find that the decline in flows is driven by an increase in the complementarity between jobs and worker

abilities, a decline in the variance and frequency of shocks, and an increase in the cost of search.

While the study of aggregate is beyond the purpose of the current paper, our setup can be used to

study the response of the economy to aggregate shocks. The Block Recursive nature of the equilibrium

allows us to solve for the allocation without the need to keep track of the distribution. The analysis of ag-

gregate fluctuations in this framework resembles that in Lise and Robin (2017) who model the economy

by means of a random search model with sorting and on-the-job search. Our setup with directed search

is simpler because it has the added advantage that the surplus of a match does not involve integrating

over randomly arriving matches.
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Appendix A List of Variables

Table 5: List of Variables

x type of the worker
y type of the firm
θ̃ market tightness
λ search intensity
Λ aggregate search intensity
δ death rate
ρ discount rate

r = δ + ρ effective discount rate
f (x, y) output function
cy(y) operation cost
cλ(λ) search cost

k entry cost

m
(

θ̃
Λ

)
matching function

U(x) value of an unemployed worker
E(x, y) value of an employed worker
J(x, y) value of a matched firm
S(x, y) value of a firm-worker pair, gross of U(x); S = E + J
V(y) value of vacancy

G(x′, y′|x) transition distribution function
φ(x, y) density of mismatched workers
u(x) density of unemployed workers
ψ(x) density of perfectly matched workers
v(y) density of vacant firms
ν(y) density of vacant firms to be matched with unemployed workers

Φ(x, y) density of vacant firms to be matched with mismatched workers

Appendix B Omitted Proofs

B.1 Proof of Proposition 1

Proof. First consider the unemployed worker’s problem (1). The free entry condition V(y) = 0 implies

that

J(x, ỹ) = k
θ̃

ϕuΛ
m−1

(
θ̃

Λ

)
. (17)
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Plugging the above equation into equation (1) yields

rU(x) = b(x) + max
λ,θ̃,Λ,ỹ

{
ϕuλm

(
θ̃

Λ

)
[S(x, ỹ)−U(x)]− cλ(λ)− kθ̃

λ

Λ

}
, (18)

which implies equation (10) by letting θ = θ̃
Λ .

Second, for the firm’s problem, notice that from equation (2), we can express w(x, y) as

w(x, y) = rE(x, y)− γ
∫ [

ηE(x′, y′) + (1− η)U(x′)− E(x, y)
]

dG(x′, y′|x, y) (19)

− max
ỹ,θ̃,Λ,λ

{
ϕeλm

(
θ̃

Λ

)
[E(x, ỹ)− E(x, y)]− cλ(λ)

}
. (20)

We plug the above equation into equation (3) and collect terms by using S = E + J. This yields a

rewriting of the firm’s problem:

rS0(x, y) = max
η,E,J

f (x, y)− cy(y) + γ
∫ [

ηS(x′, y′) + (1− η)U(x′)− S(x, y)
]

dG(x′, y′|x, y)

+ max
ỹ,θ̃,Λ,λ

{
ϕeλm

(
θ̃

Λ

)
[E(x, ỹ)− E(x, y)]− cλ(λ)

}
− ϕeλ

?m
(

θ̃?

Λ?

)
J(x, y), (21)

subject to the promise-keeping constraint E0(x, y) ≥ Ē(x, y).

We next will show that the optimal solution to the above problem satisfies equation (11). Obviously,

ηS(x′, y′) + (1− η)U(x′) = max{S(x′, y′), U(x′)}: when the firm makes its separation decision, it just

compares S and U. Moreover, using the fact E(x, y) = S(x, y)− J(x, y) and the free entry condition (17),

we can rewrite ϕeλm
(

θ̃
Λ

)
[E(x, ỹ)− E(x, y)]− cλ(λ) as

ϕeλm
(

θ̃

Λ

)
[E(x, ỹ)− E(x, y)]− cλ(λ)

= ϕeλm
(

θ̃

Λ

)
[S(x, ỹ)− S(x, y)]− cλ(λ)− kλ

θ̃

Λ
+ ϕeλm

(
θ̃

Λ

)
J(x, y). (22)

Since λ?, θ̃? and Λ? are the optimal solutions,
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max
ỹ,θ̃,Λ,λ

{
ϕeλm

(
θ̃

Λ

)
[E(x, ỹ)− E(x, y)]− cλ(λ)

}
− ϕeλ

?m
(

θ̃?

Λ?

)
J(x, y)

≤ max
ỹ,θ̃,Λ,λ

{
ϕeλm

(
θ̃

Λ

)
[S(x, ỹ)− S(x, y)]− cλ(λ)− kλ

θ̃

Λ

}
. (23)

Moreover, when λ?m
(

θ̃?

Λ?

)
> 0, the above equality is achieved only if J(x, y) = 0; when when λ?m

(
θ̃?

Λ?

)
=

0, the above equality holds for any J(x, y) ≥ 0. We also know from the free entry condition (17) that the

firm’s value has to be strictly positive upon matching with the worker.

Therefore, the optimal contract has to satisfy that when a new match is formed, the firm obtains a

positive continuation value since the worker does search on the job; when the worker starts to search on

the job, the firm obtains zero continuation value. In both cases, it is straightforward to verify that the

value S = E + J satisfies equation (11) by letting θ = θ̃
Λ .

The optimal contract can be implemented by many wage schemes. One wage scheme is designed as

follows. When a (x, ỹ) match is initially formed, the wage w(x, ỹ) satisfies

rJ(x, ỹ) = f (x, ỹ)− cy(ỹ)− w(x, ỹ)− γJ(x, ỹ).

The firm pays a fixed wage w(x, ỹ) to the worker, and when a shock arrives, either the pair is separated

or the worker starts to search on the job, as the new match is not the best one with probability one under

the continuous density assumption. Therefore, the firm always obtains zero value upon the arrival of

the shock. We can immediately solve w(x, ỹ) = f (x, ỹ)− cy(ỹ)− (r + γ)k θ̃
ϕuΛ m−1

(
θ̃
Λ

)
. After the arrival

of a shock, the firm’s continuation value becomes J(x′, y′) = 0 and hence w(x′, y′) = f (x′, y′)− cy(y′).

B.2 Proof of Proposition 2

Proof. First of all, it is straightforward to see that there always exists a unique ∆(x, y) solving Equation

(13). For any given S?(x), the solution to Equation (14) is unique as well: U(x) = b(x)
r if S?(x) ≤ b(x)

r ,

and there is a unique U(x) > b(x)
r solving Equation (14) when S?(x) > b(x)

r .

Second, Equation (12) implies that

S?(x) =
f ?(x)
r + γ

+
γ
∫

max{S(x′, y′), U(x′)}dG(x′, y′)
r + γ

. (24)
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Denote

A =
γ
∫

max{S(x′, y′), U(x′)}dG(x′, y′)
r + γ

. (25)

Then Equation (24) implies that S?(x; A) = f ?(x)
r+γ + A. Since the solutions to Equations (13) and (14) are

unique, we obtain uniquely S(x′, y′; A) and U(x′; A) for a given A ≥ 0. Plug these expressions back to

Equation (25), and we get an equation about A:

A =
γ
∫

max{S(x′, y′; A), U(x′; A)}dG(x′, y′)
r + γ

. (26)

Obviously, when A = 0, the RHS is larger than the LHS. Moreover, since S?(x; A) = f ?(x)
r+γ + A and

S(x, y; A) = S?(x; A)− ∆(x, y), we obtain ∂S
∂A = 1. Meanwhile, Equation (14) implies that 0 ≤ ∂U

∂S? < 1

and hence 0 ≤ ∂U
∂A < 1. Therefore, the derivative of the RHS with respect to A is larger than 0, but less

than γ
r+γ < 1. As a result, there must exist a unique A solving the above equation. The uniqueness of A

directly implies that S(x, y) and U(x) are unique as well.

B.3 Proof of Proposition 3

Proof. Since the optimal ỹ = µ(x) is always chosen to maximize f (x, y)− cy(y), we obtain

fx(x, µ(x)) = c′y(µ(x)). (27)

Total differentiation implies that

µ′(x) =
fxy

c′′y − fyy
. (28)

By Assumption 1, c′′y − fyy > 0 and hence µ′(x) ≥ 0 if and only if f (x, y) is supermodular: fxy = 0.

B.4 Proof of Proposition 4

Proof. From Equation (13), ∆(x, y) = S?(x)− S(x, y) is increasing in f ?(x)−
[

f (x, y)− cy(y)
]
. f ?(x)−[

f (x, y)− cy(y)
]
= 0 when y = µ(x), and Assumption 1 implies that f ?(x) −

[
f (x, y)− cy(y)

]
is in-

creasing in |y − µ(x)|. Since the optimal ỹ = µ(x) is always chosen to maximize f (x, y) − cy(y), we

obtain

fx(x, µ(x)) = c′y(µ(x)). (29)

And y ∈ M(x) if and only if S(x, y) ≥ U(x). Therefore, there exist y(x) ≥ y(x) ≥ 0 such that y ∈ M(x)

if and only if y ∈ [y(x), y(x)]. In particular, the interior bounds y(x), y(x) are determined by S(x, y) =

U(x) and S(x, y) = U(x).
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B.5 Proof of Proposition 5

Proof. The comparative static results with respect to ∆(x, y) all come from Equation (13). From that

equation, we have: 1) When the degree of supermodularity ω increases, then f ?(x)−
[

f (x, y)− cy(y)
]

goes up and hence ∆(x, y) goes up as well; 2) When the shock arrival rate γ increases, then ∆(x, y)

should decrease to satisfy Equation (13); 3) When κ or σ changes, then ∆(x, y) should not change because

Equation (13) is not affected. The change of ∆ immediately implies the change in λe.

The comparative static results with respect to S? all come from Equation (12). When the degree of

supermodularity ω increases, ∆(x, y) goes up and hence S(x, y) goes down if S? stays the same. Since f ?

is independent of ω, S? must decrease from Equation (12). Then λu should also go down from Equation

(14). However, the impacts of other parameters on S? are ambiguous. Take the comparative static of γ

with respect to S? for example. There are two opposing effects from an increase in γ. On the one hance,

if S? stays the same, S(x, y) increases since ∆ goes down while U(x) does not change. This implies that

S? should go up. On the other hand,

γ

[∫
max{S(x′, y′), U(x′)}dG(x′, y′)− S?(x)

]

becomes more negative as γ goes up when
∫

max{S(x′, y′), U(x′)}dG(x′, y′) − S?(x) < 0. Numerical

results suggest that the change of S? is indeed ambiguous as γ increases.

Appendix C Numerical Algorithm

Step 1 Calculate the equilibrium value functions S(x, y) and U(x) for any (x, y). For any initial guess of

S(x, x), we can compute S(x, x)− S(x, y) using m-files EW1 and EW2; and compute S(x, x)−U(x)

using m-files EW3 and EW4. For ng grids of x and a set of initial guesses S0(x, x), we can hence

numerically evaluate

∫
max{S(x′, y′), U(x′)}dG(x′, y′|x) = ∑

i,j
max{S(xi, yj), U(xi)}∆x∆y (30)

and get a new update S1(x, x). Keep this process until S(x, x) converges.

Step 2 After solving S(x, x), we can first characterize the boundaries. Then we also take ng grids of x

uniformly distributed on [0, 1], and 2 ∗ ng + 1 grids of y uniformly distributed on [0, 2]. We let

A(i, j) = 1 if (xi, yj) is in the acceptance region, and = 0 otherwise. We can define vector xx

corresponding to the i’s with A(i, j) = 1, and vector yy corresponding to the j’s with A(i, j) = 1. In
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other words, A(xx(i), yy(i)) = 1 for any i.

Step 3 From the equations of the stationary density, we get:

u(x) =
γ + δ

λum
(

θ̃u
λu

)ψ(x)−

∫ ȳ
y φ(x, y)λym

(
θ̃y
λy

)
dy

λum
(

θ̃u
λu

) , (31)

and hence

(
λum

(
θ̃u

λu

)
+ δ

) γ + δ

λum
(

θ̃u
λu

)ψ(x)−

∫ ȳ
y φ(x, y)λym

(
θ̃y
λy

)
dy

λum
(

θ̃u
λu

)


= γ
∫

Pr
(

y /∈ (y, ȳ)|x̃
)

φ(x̃, ỹ)dx̃dỹ + γ
∫

Pr
(

y /∈ (y, ȳ)|x̃
)

ψ(x̃)dx̃ + δ f0(x).

We take f0 = 1: the new entrant’s x follows a uniform distribution. Discretizing implies that:

(MPui + δ)

{
γ + δ

MPui
ψi−

∑j φi,j MPei,j∆y
MPui

}
= γ ∑ Probi,sφs,j∆x∆y + γ ∑ Probi,sψs∆x + δ,

where MPu and MPe denote the matching probability for the unemployed and employed workers

respectively, and Probi,s is the density that the new x is xi, the old x is xs, and the match is separated.

Finally, we have

(
γ + δ + MPei,j

)
φi,j = γ ∑ g(xi, yj|xt)φt,s∆x∆y + γ ∑ g(xi, yj|xt)vt∆x. (32)

The above system of equations are N linear equations about N unknowns where N is the length of

the vector xx. Solving this system of linear equations gives us the stationary densities.

Appendix D Further Results

D.1 More General Shocks

1. Shocks that depend on y only. This includes y fixed: G(x′, y′|y).

Now the value function has a term H(y) that depends on y where H(y) =
∫

max{U(x′), S(x′, y)}dG(x′|y).
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The value function of the surplus now is:

(r+γ)S(x, y) = f (x, y)− cy(y)+γ
∫

max{U(x′), S(x′, y)}dG(x′|y)+max
λ,θ,ỹ
{ϕeλm (θ) [S(x, ỹ)− S(x, y)]− cλ(λ)− kλθ}

(33)

This affects the FOC of the choice of y:

fy(x, y)− c′y(y) + γH′(y) = 0. (34)

The SOC satisfies:

fyy(x, y)− c′′y (y) + γH′′(y) < 0. (35)

Evaluating the FOC at the equilibrium allocation x = µ(y) and taking the total derivative yields:

fyy(µ, y) + fxy(µ, y)µ′(y)− c′′y (y) + γH′′(y) = 0. (36)

Jointly with the SOC this implies there is PAM provided fxy > 0.

2. Shocks that depend on y and x: G(x′|x, y).

Now the term H depends on both x, y

(r+γ)S(x, y) = f (x, y)− cy(y)+γ
∫

max{U(x′), S(x′, y)}dG(x′|x, y)+max
λ,θ,ỹ
{ϕeλm (θ) [S(x, ỹ)− S(x, y)]− cλ(λ)− kλθ}

(37)

and FOC condition is:

fy(x, y)− c′y(y) + γHy(x, y) = 0. (38)

The SOC satisfies:

fyy(x, y)− c′′y (y) + γHyy(x, y) < 0. (39)

Evaluating the FOC at the equilibrium allocation x = µ(y) and taking the total derivative yields:

fyy(µ, y) + fxy(µ, y)µ′(y)− c′′y (y) + γ
(

Hyy(µ, y) + Hxy(µ, y)µ′
)
= 0. (40)

Then there is PAM provided:

fxy(µ, y) + γHxy(µ, y) > 0. (41)

When is Hxy > 0? Let y be fixed and therefore G does not depend on y. Ignore the maximization

over U, and define H̃ as:

H̃(x, y) =
∫

S(x, y)dG(x′|x) (42)
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then

H̃y =
∫

Sy(x′|y)dG(x′|x) (43)

and

H̃xy =
∫

Sygxdx = −
∫

SxyGx(x′|x)dx′ (44)

as a result, under FOSD of G in x (Gx < 0) we obtain that Hxy > 0 whenever Xxy > 0.
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