OPTIMAL SPATIAL TAXATION ARE BIG CITIES TOO SMALL?

Jan Eeckhout* and Nezih Guner&

*University College London, Barcelona GSE-UPF &ICREA-MOVE, Autonoma, and Barcelona GSE

Wharton November 4, 2014

- Local labor markets (cities):
 - 1. Urban wage premium
 - 2. Location choice (size) determines prices (wages, housing)
- Ex ante identical agents → ex post heterogeneous

- Local labor markets (cities):
 - 1. Urban wage premium
 - 2. Location choice (size) determines prices (wages, housing)
- Ex ante identical agents \rightarrow ex post heterogeneous
- Government needs to raise revenue G:
 - Location choice responds to tax rate in local labor market
 - Tax cities differentially? Flat (proportional)? Lump sum?
- → Propose GE model and estimate optimal income tax schedule

EXISTING FEDERAL INCOME TAXES

- Federal Taxes affect workers of same skill differentially
 - 1. Urban Wage Premium
 - 2. Progressive Taxation
- Average tax rate: 5% points difference at median income:

EXISTING FEDERAL INCOME TAXES

- Federal Taxes affect workers of same skill differentially
 - 1. Urban Wage Premium
 - 2. Progressive Taxation
- Average tax rate: 5% points difference at median income:

	Labor Force	Wage level	Avg. Tax Rate
New York	9 million	1.5	19.0%
Asheville, NC	130,000	1	14.0%

EXISTING FEDERAL INCOME TAXES

- Federal Taxes affect workers of same skill differentially
 - 1. Urban Wage Premium
 - 2. Progressive Taxation
- Average tax rate: 5% points difference at median income:

	Labor Force	Wage level	Avg. Tax Rate
New York	9 million	1.5	19.0%
Asheville, NC	130,000	1	14.0%

- ullet Due to mobility: no redistribution \Rightarrow same skills, same utility
- ... Focus on taxing ex ante identical agents

- Taxes affect identical agents differently across cities
 - ⇒ In equilibrium: affects location decision
- Policy Question: Optimal Taxation across local labor markets
 - Are big cites too small/too big?

FINDINGS REPRESENTATIVE AGENT ECONOMY

- Optimal Ramsey Tax rates in big cities:
 - relatively decreasing in Gvt spending G
 - relatively increasing in concentration of housing wealth
- For the US, benchmark economy:
 - Optimal tax higher in big cities (but lower than current)
 - Would lead to big relocation and output gain (6.9%)
 - Moderate welfare gain

Related Work

- Literature:
 - Impact of income taxation: Wildasin (1980), Glaeser (1998), Kaplow (1995), Knoll-Griffith (2003)
 - Quantitative: Albouy (2009), Albouy-Seegert (2010)
- Main difference: general equilibrium
- Prices, quantities (housing, consumption, population) are endogenous

Model

Model

- J cities, size I_j with $\mathcal{L} = \sum_j I_j$
- Preferences:

$$u(c,h) = a_j I_i^{\delta} c^{1-\alpha} h^{\alpha}$$

 a_i : amenities; I_i^{δ} are congestion costs

Mobility ⇒ utility equalization:

$$u(c_i, h_i) = u(c_{i'}, h_{i'}), \quad \forall j, j'$$

Production:

$$y_j = A_j I_i^{\gamma} \quad \Rightarrow \quad w_j = A_j I_i^{\gamma - 1}$$

• Market clearing: $\sum_{j} I_{j} = \mathcal{L}$ and $h_{j}I_{j} = H_{j}$

MODEL TAX SCHEDULE

- Pre tax income w; after tax income \tilde{w}
- To estimate US tax schedule (Heathcote-Storesletten-Violante 2012, and Bénabou 2002):

$$\tilde{\mathbf{w}}_j = \lambda \mathbf{w}_j^{1-\tau}$$

- $\tau = 0$: proportional; $\tau > 0$: progressive; $\tau < 0$: regressive
- US, estimated $\tau \approx 0.12$
- Taxes are used to finance government spending G
- $T^G = \phi \frac{G}{L}$: fraction ϕ is transferred to households

MODEL HOUSING PRODUCTION

- On average: land value 30%, construction 70% of housing \rightarrow land from 25% (small) to 50% (big cities)
- Housing supply in city j (with K_i capital, L_i land)

$$H_j = B \left[(1 - \beta) K_j^{\rho} + \beta L_j^{\rho} \right]^{1/\rho},$$

Representative competitive firm in each city maximizes profits

Model

OWNERSHIP OF HOUSING

- Housing value: 24% of output
 - Construction cost (17%): foregone consumption
 - Land value (7%): transfer
- Ownership distribution of housing is key to results
- Income from land is redistributed to the households:

$$T_j = (1 - \psi) \frac{\sum_j r_j L_j}{\sum_j I_j}$$

- ψ captures concentration of land wealth
 - ullet $\psi=$ 0: households hold perfectly diversified housing portfolio
 - $\psi=1$: all housing is held by zero measure landlords

MODEL OWNERSHIP OF HOUSING

- Model housing as an asset traded after policy impact
- But only at extreme cases
- Complication for more general setup: heterogeneity
 - 1. Initial distribution matters
 - 2. Trading assets \Rightarrow ex post heterogeneity

THE HOUSEHOLD PROBLEM

Households solve:

$$\max_{\{c_j,h_j\}} u(c_j,h_j) = a_j l_j^{\delta} c_j^{1-\alpha} h_j^{\alpha}$$

s.t. $c_j + p_j h_j \leq \tilde{w}_j + T_j + T^G$

$$\Rightarrow p_j h_j = \alpha (\tilde{w}_j + T_j + T^G)$$

the indirect utility is:

$$u_j = a_j[(1-\alpha)^{1-\alpha}](\tilde{w}_j + T_j + T^G)^{1-\alpha}I_j^{\delta-\alpha}H_j^{\alpha}.$$

Housing Production

• The firm maximizes its profits by choosing K_j and L_j

$$\max_{K_{j}, L_{j}} p_{j} B[(1-\beta)K_{j}^{\rho} + \beta L_{j}^{\rho}]^{1/\rho} - r_{j}L_{j} - r^{K}K_{j}$$

 $(p_j \text{ housing price, } r_j \text{ land rental price, } r^K \text{ capital rental price})$

- Set $r^K = 1$. Free entry + FOC's
 - ⇒ the equilibrium housing supply is

$$h_j = B \left[(1 - \beta) \left(\frac{1 - \beta}{\beta} r_j \right)^{\frac{\rho}{1 - \rho}} + \beta \right]^{1/\rho} L_j$$

WORKER MOBILITY

• Workers must be indifferent between locations j and j'

$$u_j = u_{j'}$$

• Normalize $a_1 = 1$, so

$$a_{j} = \frac{\left(\widetilde{w}_{1} + T_{1} + T^{G}\right)^{1-\alpha} I_{j}^{\alpha-\delta} \left[\left(1-\beta\right) \left(\frac{1-\beta}{\beta} r_{1}\right)^{\frac{\rho}{1-\rho}} + \beta\right]^{\alpha/\rho} L_{1}^{\alpha}}{\left(\widetilde{w}_{j} + T_{j} + T^{G}\right)^{1-\alpha} I_{1}^{\alpha-\delta} \left[\left(1-\beta\right) \left(\frac{1-\beta}{\beta} r_{j}\right)^{\frac{\rho}{1-\rho}} + \beta\right]^{\alpha/\rho} L_{j}^{\alpha}}$$

after using indirect utility and equilibrium housing supply.

QUANTITATIVE EXERCISE

QUANTITATIVE EXERCISE BENCHMARK ECONOMY – DATA

- Take w_j and l_j from the data. Set $\gamma = 1$, so $A_j = w_j$
- 2013 CPS. 264 MSAs. Age 16+ in labor force
- The average labor force is 484,373 max: NY, 9.3 million; min: Bowling Green, KY, 37,000
- Average weekly wages is \$645 max: 70% above mean (Sante Fe, NM); half (Amarillo, TX)

SIZE DISTRIBUTION (LABOR FORCE)

WAGE DISTRIBUTION

QUANTITATIVE EXERCISE

Benchmark Economy – Taxes

The relation between after and before taxes

$$\tilde{w}_j = \lambda w_i^{1-\tau}$$

- Use the OECD tax-benefit calculator: $\lambda = 0.85, \tau = 0.12$
 - λ : Personal + Soc. Sec.: Robustness, $\lambda = 0.9$ and 0.815
 - τ : Robustness, $\tau = 0.053$ and 0.2

W	0.5	1	2	5
average tax rate	11.4%	15%	25%	32.8%

• We set $\phi = 0.5$ (half of tax revenue are transfers)

QUANTITATIVE EXERCISE

BENCHMARK ECONOMY - PREFERENCE PARAMETERS

- Housing Exp. 24% (Davis, Ortalo-Magné) $\Rightarrow \alpha = \frac{0.24}{\lambda} = 0.282$
- Commuting cost elasticity $\delta = -0.1$
 - \rightarrow Kahn (2010): the joint effect of commuting time (opportunity wage cost) and direct commuting cost (transportation)
- Asset distribution: $\psi = 0.5$

QUANTITATIVE EXERCISE BENCHMARK ECONOMY - CALIBRATION

- Need to determine $\{\beta, \rho, B, L_j, a_j\}$.
- Select β and ρ such that:
 - 1. average share of land in housing cost is 0.3
 - land share ∈ [0.15, 0.5] across MSA (Davis-Palumbo (2007), Albouy-Ehrlich (2012))
- B such that $h = 200 \text{ m}^2$ (average across MSAs)
- Use observed land area L_i (average across MSAs 5000 km²)

QUANTITATIVE EXERCISE LAND AREAS

QUANTITATIVE EXERCISE BENCHMARK ECONOMY - CALIBRATION

- Find a_i from utility equalization
- Benchmark Economy. Procedure:
 - 1. $A_j = w_j$ (FOC) and I_j from data
 - 2. given λ and τ , find $\{p_j, r_j, H_j, a_j, c_j, h_j, T_j\}$ such that l_j' s are equilibrium allocations

QUANTITATIVE EXERCISE

Benchmark Economy - Wages (observed)

QUANTITATIVE EXERCISE BENCHMARK ECONOMY – HOUSING PRICES

QUANTITATIVE EXERCISE BENCHMARK ECONOMY – AMENITIES

QUANTITATIVE EXERCISE

BENCHMARK ECONOMY - LAND SHARE IN THE VALUE OF HOUSING

QUANTITATIVE EXERCISE OPTIMAL TAXATION

- Given A_i and a_i from the benchmark economy, calculate:
 - 1. new equilibrium allocation $\{I_i, c_i, h_i, T_i, H_i\}$
 - 2. prices $\{p_i, r_i\}$

for different λ, τ (λ such that revenue neutral)

• Select τ^* that maximizes utility

Optimal Tax Schedule au

TAX SCHEDULES

ACTUAL VS. OPTIMAL

SIMULATION: $\tau^* = 0.046$ Change in Labor Force – Productivity

SIMULATION: $\tau^{\star} = 0.046$ Change in Labor Force – Amenities

Simulation: $\tau^* = 0.046$

CHANGE IN AFTER-TAX WAGES

Simulation: $\tau^* = 0.046$

CHANGE IN HOUSING PRICES

OUTCOMES FOR SELECTED CITIES

MSA	Α	а	%Δ1	%Δ <i>p</i>	%Δ <i>c</i>	%Δ <i>h</i>
Highest A						
Stamford, CT	2.01	0.51	18.8	12.0	5.1	-6.2
San Jose, CA	1.47	0.67	10.7	6.1	2.8	-3.2
Danbury, CT	1.43	0.50	10.6	5.5	2.6	-2.8
Lowest A						
Las Cruces, NM	0.67	0.64	-11.4	-4.0	-2.3	1.8
Laredo, TX	0.66	0.67	-11.4	-4.1	-2.3	1.9
Brownsville, TX	0.66	0.81	-10.1	-4.6	-2.3	2.4
Highest a						
Chicago, IL	1.08	1.15	2.2	1.4	0.6	-0.8
Los Angeles-Long Beach, CA	1.05	1.13	1.5	0.9	0.4	-0.5
New York-Northeast NJ	1.25	1.00	5.9	3.6	1.6	-1.9
Lowest a						
Danbury, CT	1.43	0.50	10.6	5.5	2.6	-2.8
Grand Junction, CO	0.91	0.49	-2.6	-0.9	-0.5	0.4
Houma-Thibodoux, LA	0.9	0.49	-2.9	-1.0	-0.6	0.5

Simulation: $\tau^* = 0.046$

CITY SIZE DISTRIBUTION

AGGREGATE OUTCOMES

Optimal $\tau^* = 0.046$

Outcomes	Benchmark
Optimal $ au$	0.046
Output gain $(\%)$	6.92
Population top 5 cities (%)	3.85
Fraction population that moves (%)	1.67
Change in average prices (%)	2.55
Welfare gain (%)	0.026

Constrained Optimal: Ramsey Taxes

- 2 cities, no gvt. transfers, congestion, amenities, housing prod.
- The Ramsey planner's problem is:

$$\max_{\{t_j\}} \ \sum_j u_j l_j$$
 s.t. $\sum_j A_j t_j l_j^{\gamma} = G, \ u_j = u_{j'}, \ \sum_j l_j = \mathcal{L}$

CONSTRAINED OPTIMAL: RAMSEY TAXES

- 2 cities, no gvt. transfers, congestion, amenities, housing prod.
- The Ramsey planner's problem is:

$$\max_{\{t_j\}} \ \sum_j u_j l_j$$
 s.t. $\sum_j A_j t_j l_j^{\gamma} = G, \ u_j = u_{j'}, \ \sum_j l_j = \mathcal{L}$

- For any ψ , the optimal taxes $\exists G^*$ such that:
 - for $G < G^*$: optimal Ramsey tax higher in big city;
 - for $G > G^*$: optimal Ramsey tax lower in big city

CONSTRAINED OPTIMAL: RAMSEY TAXES ROLE OF G

- *G* is source of inefficiency (disappears from the economy)
- $G \uparrow \Rightarrow \text{tax more productive city less}$
- Productive resources to pay G: efficient from work in big city
 - ightarrow G \uparrow \Rightarrow optimal urbanization \uparrow

Equal housing bond: $\psi = 0$

FIGURE: A. Optimal taxes t_1, t_2 ; B. Population l_1, l_2 ; C. Output. $(A_1 = 1, A_2 = 2, \mathcal{L} = 100, \alpha = 0.31, \psi = 0)$

Zero measure landlords: $\psi = 1$

FIGURE : A. Optimal taxes t_1, t_2 ; B. Population l_1, l_2 ; C. Ouput. $(A_1 = 1, A_2 = 2, \mathcal{L} = 100, \alpha = 0.31, \psi = 1)$

ZERO MEASURE LANDLORDS

- When land ownership is concentrated
 - \rightarrow No effect on productivity
- More people in big cities ⇒ higher value of land (no value to utilitarian planner)
 - ightarrow ψ \uparrow \Rightarrow optimal urbanization \downarrow

Benchmark: $\psi = 0.5$

FIGURE : A. Optimal taxes t_1, t_2 ; B. Population l_1, l_2 ; C. Ouput. $(A_1 = 1, A_2 = 2, \mathcal{L} = 100, \alpha = 0.31, \psi = 0.5)$

Unconstrained Optimal

• The planner chooses the bundles l_j , c_j , h_j to maximize Utilitarian welfare:

$$\max_{l_j,c_j,h_j} \sum_j c_j^{1-\alpha} h_j^{\alpha} l_j$$
s.t.
$$\sum_j c_j l_j + \sum_j K_j + G = \sum_j A_j l_j, \quad h_j l_j = H_j, \quad \sum_j l_j = \mathcal{L}.$$

- Solution:
 - Equate MU_i and MP_i (Ramsey: $MU, MP \neq$ across cities)
 - ⇒ Few in small city: unproductive, large consumption

Unconstrained Optimal

FIGURE: $A_1 = 1, A_2 = 2, \mathcal{L} = 100, \alpha = 0.31, u = c^{0.8}$:

- Constrained optimal: utility equal. \neq marginal utility equal. With mobility (Ramsey): tradeoff productivity–utility (low G):
 - too little consumption in small cities
 - too little production in large cities
- Can we implement first best in this economy?
- Yes, with lotteries (as in labor supply Rogerson)
- Maybe not in a static world, but over life cycle
- But:
 - What with those who live in NY MSA for their whole life?
 - Lottery with zero probability if $\gamma=1...$

SENSITIVITY: EQUAL TAXES

LAND OWNERSHIP I

Outcomes	Benchmark	All bond	All landlord
	$\psi=$ 0.5	$\psi = 0$	$\psi=1$
Optimal $ au$	0.046	-0.067	0.134
Output gain (%)	6.92	16.93	-1.31
Population top 5 cities (%)	3.85	9.04	-0.75
Fraction population that moves (%)	1.67	3.90	0.33
Change in average prices (%)	2.55	6.34	-0.47
Welfare gain (%)	0.026	0.14	0.001

LAND OWNERSHIP II

- Asset distribution to reflect owner occupied housing rate 67%
- Generates ex post heterogeneity
- Short cut (but land is not correctly priced!):

$$T_j = \theta \frac{r_j L_j}{l_j} + (1 - \theta) \frac{\sum_j r_j L_j}{\sum_j l_j}$$

instead of landlords: get equal share of land value in the city

"as if" within city redistribution

LAND OWNERSHIP II

Outcomes	Benchmark	owner occupied
	$\psi = 0.5$	$\theta = 0.67$
Optimal $ au$	0.046	0.061
Output gain (%)	6.92	5.78
Population top 5 cities (%)	3.85	3.23
Fraction population that moves (%)	1.67	1.40
Change in average prices (%)	2.55	2.16
Welfare gain (%)	0.026	0.018

INITIAL TAX POLICY

		$\lambda = 0.9$			$\lambda = 0.85$			$\lambda = 0.815$	
au	0.053	0.12	0.2	0.053	0.12	0.2	0.053	0.12	0.2
Optimal τ^*	0.0092	0.0133	0.0153	0.0429	0.0457	0.0490	0.0969	0.0990	0.1010
Output gain (%)	3.78	9.50	16.98	0.91	6.92	14.53	-4.21	2.11	10.22
Pop top 5 (%)	2.13	5.23	9.07	0.52	3.85	7.83	-2.46	1.20	5.61
Pop moves (%)	0.93	2.26	3.91	0.23	1.67	3.38	1.07	0.52	2.43
Avg. prices (%)	1.40	3.53	6.30	0.33	2.55	5.34	-1.53	0.77	3.71
Welfare gain (%)	0.0082	0.0512	0.1499	0.0004	0.0264	0.1090	0.0103	0.0024	0.0520

FIXED LAND AREA (5000KM²)

FIXED LAND AREA (5000km^2)

Outcomes	Benchmark	Fixed Land Area
Optimal $ au$	0.046	0.059
Output gain (%)	6.92	5.17
Population change top 5 cities $(\%)$	3.85	2.88
Fraction Population that Moves (%)	1.67	1.30
Change in average prices (%)	2.55	2.56
Welfare gain (%)	0.026	0.016

No Rebate of Tax Revenue $(\phi = \mathbf{0})$

Outcomes	Benchmark	No Tax Rebate
Optimal $ au$	0.046	0.045
Output gain $(\%)$	6.92	7.43
Population change top 5 cities (%)	3.85	4.12
Fraction population that moves (%)	1.67	1.79
Change in average prices $(\%)$	2.55	2.89
Welfare gain (%)	0.026	0.030

THE ROLE OF HETEROGENEITY

Heterogeneity in:

- 1. Housing asset holdings
- 2. Skills: $\tau^{US} = 0.12$? Redistribution heterogeneous agents
- ⇒ Role of a city-specific tax

CONCLUDING REMARKS

- Federal Taxation can lead to spatial misallocation
- Taxes location specific ⇒ optimal Ramsey tax not flat
 - Gvt. spending $G \uparrow \Rightarrow \text{tax big city} \downarrow$
 - Asset concentration ↑ ⇒ tax big city ↑
- US benchmark economy, optimal tax:
 - 1. Tax big cities more: $\tau^* \sim 0.04$ (less than current)
 - 2. Large effects on output (6.9%) and population (1.67%)
 - 3. Small effects on welfare
- ⇒ Big GE effects from gvt. spending and ownership structure

OPTIMAL SPATIAL TAXATION ARE BIG CITIES TOO SMALL?

Jan Eeckhout* and Nezih Guner&

*University College London, Barcelona GSE-UPF &ICREA-MOVE, Autonoma, and Barcelona GSE

Wharton November 4, 2014