Optimal Spatial Taxation Are Big Cities Too Small?

Jan Eeckhout* and Nezih Guner\&

*University College London, Barcelona GSE-UPF ${ }^{\text {\& }}$ ICREA-MOVE, Autonoma, and Barcelona GSE

Wharton
November 4, 2014

Motivaton

- Local labor markets (cities):

1. Urban wage premium
2. Location choice (size) determines prices (wages, housing)

- Ex ante identical agents \rightarrow ex post heterogeneous

Motivaton

- Local labor markets (cities):

1. Urban wage premium
2. Location choice (size) determines prices (wages, housing)

- Ex ante identical agents \rightarrow ex post heterogeneous
- Government needs to raise revenue G :
- Location choice responds to tax rate in local labor market
- Tax cities differentially? Flat (proportional)? Lump sum?
\rightarrow Propose GE model and estimate optimal income tax schedule

Motivation

 Existing Federal Income Taxes

 Existing Federal Income Taxes}

- Federal Taxes affect workers of same skill differentially

1. Urban Wage Premium
2. Progressive Taxation

- Average tax rate: 5% points difference at median income:

Motivation

Existing Federal Income Taxes

- Federal Taxes affect workers of same skill differentially

1. Urban Wage Premium
2. Progressive Taxation

- Average tax rate: 5% points difference at median income:

Labor Force Wage level Avg. Tax Rate

New York	9 million	1.5	19.0%
Asheville, NC	130,000	1	14.0%

Motivation

Existing Federal Income Taxes

- Federal Taxes affect workers of same skill differentially

1. Urban Wage Premium
2. Progressive Taxation

- Average tax rate: 5% points difference at median income:

Labor Force Wage level Avg. Tax Rate

New York	9 million	1.5	19.0%
Asheville, NC	130,000	1	14.0%

- Due to mobility: no redistribution \Rightarrow same skills, same utility
\therefore Focus on taxing ex ante identical agents

Motivation

- Taxes affect identical agents differently across cities
\Rightarrow In equilibrium: affects location decision
- Policy Question: Optimal Taxation across local labor markets
- Are big cites too small/too big?

Findings

Representative Agent Economy

- Optimal Ramsey Tax rates in big cities:
- relatively decreasing in Gvt spending G
- relatively increasing in concentration of housing wealth
- For the US, benchmark economy:
- Optimal tax higher in big cities (but lower than current)
- Would lead to big relocation and output gain (6.9\%)
- Moderate welfare gain

Related Work

- Literature:
- Impact of income taxation: Wildasin (1980), Glaeser (1998), Kaplow (1995), Knoll-Griffith (2003)
- Quantitative: Albouy (2009), Albouy-Seegert (2010)
- Main difference: general equilibrium
- Prices, quantities (housing, consumption, population) are endogenous

Model

Model

- J cities, size l_{j} with $\mathcal{L}=\sum_{j} l_{j}$
- Preferences:

$$
u(c, h)=a_{j} l_{j}^{\delta} c^{1-\alpha} h^{\alpha}
$$

a_{j} : amenities; l_{j}^{δ} are congestion costs

- Mobility \Rightarrow utility equalization:

$$
u\left(c_{j}, h_{j}\right)=u\left(c_{j^{\prime}}, h_{j^{\prime}}\right), \quad \forall j, j^{\prime}
$$

- Production:

$$
y_{j}=A_{j} l_{j}^{\gamma} \quad \Rightarrow \quad w_{j}=A_{j} l_{j}^{\gamma-1}
$$

- Market clearing: $\sum_{j} l_{j}=\mathcal{L}$ and $h_{j} l_{j}=H_{j}$

Model

Tax Schedule

- Pre tax income w; after tax income \tilde{w}
- To estimate US tax schedule (Heathcote-Storesletten-Violante 2012, and Bénabou 2002):

$$
\tilde{w}_{j}=\lambda w_{j}^{1-\tau}
$$

- $\tau=0$: proportional; $\tau>0$: progressive; $\tau<0$: regressive
- US, estimated $\tau \approx 0.12$
- Taxes are used to finance government spending G
- $T^{G}=\phi \frac{G}{\mathcal{L}}$: fraction ϕ is transferred to households

Model

Housing Production

- On average: land value 30%, construction 70% of housing \rightarrow land from 25\% (small) to 50\% (big cities)
- Housing supply in city j (with K_{j} capital, L_{j} land)

$$
H_{j}=B\left[(1-\beta) K_{j}^{\rho}+\beta L_{j}^{\rho}\right]^{1 / \rho},
$$

- Representative competitive firm in each city maximizes profits

Model

Ownership of Housing

- Housing value: 24% of output
- Construction cost (17\%): foregone consumption
- Land value (7\%): transfer
- Ownership distribution of housing is key to results
- Income from land is redistributed to the households:

$$
T_{j}=(1-\psi) \frac{\sum_{j} r_{j} L_{j}}{\sum_{j} I_{j}}
$$

ψ captures concentration of land wealth

- $\psi=0$: households hold perfectly diversified housing portfolio
- $\psi=1$: all housing is held by zero measure landlords

Model

Ownership of Housing

- Model housing as an asset traded after policy impact
- But only at extreme cases
- Complication for more general setup: heterogeneity

1. Initial distribution matters
2. Trading assets \Rightarrow ex post heterogeneity

Equilibrium Allocation

Equilibrium Allocation

The Household Problem

- Households solve:

$$
\begin{aligned}
& \max _{\left\{c_{j}, h_{j}\right\}} u\left(c_{j}, h_{j}\right)=a_{j} l_{j}^{\delta} c_{j}^{1-\alpha} h_{j}^{\alpha} \\
& \text { s.t. } c_{j}+p_{j} h_{j} \leq \tilde{w}_{j}+T_{j}+T^{G} \\
& \Rightarrow p_{j} h_{j}=\alpha\left(\tilde{w}_{j}+T_{j}+T^{G}\right)
\end{aligned}
$$

- the indirect utility is:

$$
u_{j}=\left.a_{j}\left[(1-\alpha)^{1-\alpha}\right]\left(\tilde{w}_{j}+T_{j}+T^{G}\right)^{1-\alpha}\right|_{j} ^{\delta-\alpha} H_{j}^{\alpha} .
$$

Equilibrium Allocation

Housing Production

- The firm maximizes its profits by choosing K_{j} and L_{j}

$$
\max _{K_{j}, L_{j}} p_{j} B\left[(1-\beta) K_{j}^{\rho}+\beta L_{j}^{\rho}\right]^{1 / \rho}-r_{j} L_{j}-r^{K} K_{j}
$$

(p_{j} housing price, r_{j} land rental price, r^{K} capital rental price)

- Set $r^{K}=1$. Free entry + FOC's
\Rightarrow the equilibrium housing supply is

$$
h_{j}=B\left[(1-\beta)\left(\frac{1-\beta}{\beta} r_{j}\right)^{\frac{\rho}{1-\rho}}+\beta\right]^{1 / \rho} L_{j}
$$

Equilibrium Allocation

Worker Mobility

- Workers must be indifferent between locations j and j^{\prime}

$$
u_{j}=u_{j^{\prime}}
$$

- Normalize $a_{1}=1$, so

$$
a_{j}=\frac{\left(\widetilde{w}_{1}+T_{1}+T^{G}\right)^{1-\alpha} l_{j}^{\alpha-\delta}\left[(1-\beta)\left(\frac{1-\beta}{\beta} r_{1}\right)^{\frac{\rho}{1-\rho}}+\beta\right]^{\alpha / \rho} L_{1}^{\alpha}}{\left(\widetilde{w}_{j}+T_{j}+T^{G}\right)^{1-\alpha} l_{1}^{\alpha-\delta}\left[(1-\beta)\left(\frac{1-\beta}{\beta} r_{j}\right)^{\frac{\rho}{1-\rho}}+\beta\right]^{\alpha / \rho} L_{j}^{\alpha}}
$$

after using indirect utility and equilibrium housing supply.

Quantitative Exercise

Quantitative Exercise
 Benchmark Economy - Data

- Take w_{j} and l_{j} from the data. Set $\gamma=1$, so $A_{j}=w_{j}$
- 2013 CPS. 264 MSAs. Age 16+ in labor force
- The average labor force is 484,373 max: NY, 9.3 million; min: Bowling Green, KY, 37,000
- Average weekly wages is $\$ 645$ max: 70\% above mean (Sante Fe, NM); half (Amarillo, TX)

Size distribution (Labor Force)

Wage Distribution

Quantitative Exercise

Benchmark Economy - Taxes

- The relation between after and before taxes

$$
\tilde{w}_{j}=\lambda w_{j}^{1-\tau}
$$

- Use the OECD tax-benefit calculator: $\lambda=0.85, \tau=0.12$
- λ : Personal + Soc. Sec.: Robustness, $\lambda=0.9$ and 0.815
- τ : Robustness, $\tau=0.053$ and 0.2

w	0.5	1	2	5
average tax rate	11.4%	15%	25%	32.8%

- We set $\phi=0.5$ (half of tax revenue are transfers)

Quantitative Exercise

Benchmark Economy - Preference Parameters

- Housing Exp. 24\% (Davis,Ortalo-Magné) $\Rightarrow \alpha=\frac{0.24}{\lambda}=0.282$
- Commuting cost elasticity $\delta=-0.1$
\rightarrow Kahn (2010): the joint effect of commuting time (opportunity wage cost) and direct commuting cost (transportation)
- Asset distribution: $\psi=0.5$

Quantitative Exercise

Benchmark Economy - Calibration

- Need to determine $\left\{\beta, \rho, B, L_{j}, a_{j}\right\}$.
- Select β and ρ such that:

1. average share of land in housing cost is 0.3
2. land share $\in[0.15,0.5]$ across MSA (Davis-Palumbo (2007), Albouy-Ehrlich (2012))

- B such that $h=200 \mathrm{~m}^{2}$ (average across MSAs)
- Use observed land area L_{j} (average across MSAs $5000 \mathrm{~km}^{2}$)

Quantitative Exercise

Land Areas

Quantitative Exercise

Benchmark Economy - Calibration

- Find a_{j} from utility equalization
- Benchmark Economy. Procedure:

1. $A_{j}=w_{j}(\mathrm{FOC})$ and I_{j} from data
2. given λ and τ, find $\left\{p_{j}, r_{j}, H_{j}, a_{j}, c_{j}, h_{j}, T_{j}\right\}$ such that $l_{j}^{\prime} s$ are equilibrium allocations

Quantitative Exercise

Benchmark Economy - Wages (observed)

Quantitative Exercise

Benchmark Economy - Housing Prices

Quantitative Exercise

Benchmark Economy - Amenities

Quantitative Exercise

Benchmark Economy - Land Share in the Value of Housing

Quantitative Exercise

Optimal Taxation

- Given A_{j} and a_{j} from the benchmark economy, calculate:

1. new equilibrium allocation $\left\{l_{j}, c_{j}, h_{j}, T_{j}, H_{j}\right\}$
2. prices $\left\{p_{j}, r_{j}\right\}$
for different λ, τ (λ such that revenue neutral)

- Select τ^{\star} that maximizes utility

Optimal Tax Schedule τ

Tax Schedules

Actual vs. Optimal

Simulation: $\tau^{\star}=0.046$

Change in Labor Force - Productivity

Simulation: $\tau^{\star}=0.046$

Change in Labor Force - Amenities

Simulation: $\tau^{\star}=0.046$

Change in After-tax Wages

Simulation: $\tau^{\star}=0.046$

Change in Housing Prices

Outcomes for Selected Cities

MSA	A	a	\% $\Delta 1$	$\% \Delta p$	\% Δc	\% Δh
Highest A						
Stamford, CT	2.01	0.51	18.8	12.0	5.1	-6.2
San Jose, CA	1.47	0.67	10.7	6.1	2.8	-3.2
Danbury, CT	1.43	0.50	10.6	5.5	2.6	-2.8
Lowest A						
Las Cruces, NM	0.67	0.64	-11.4	-4.0	-2.3	1.8
Laredo, TX	0.66	0.67	-11.4	-4.1	-2.3	1.9
Brownsville, TX	0.66	0.81	-10.1	-4.6	-2.3	2.4
Highest a						
Chicago, IL	1.08	1.15	2.2	1.4	0.6	-0.8
Los Angeles-Long Beach, CA	1.05	1.13	1.5	0.9	0.4	-0.5
New York-Northeast NJ	1.25	1.00	5.9	3.6	1.6	-1.9
Lowest a						
Danbury, CT	1.43	0.50	10.6	5.5	2.6	-2.8
Grand Junction, CO	0.91	0.49	-2.6	-0.9	-0.5	0.4
Houma-Thibodoux, LA	0.9	0.49	-2.9	-1.0	-0.6	0.5

Simulation: $\tau^{\star}=0.046$

City Size Distribution

Aggregate Outcomes

Optimal $\tau^{\star}=0.046$

Outcomes	Benchmark
Optimal τ	0.046
Output gain (\%)	6.92
Population top 5 cities (\%)	3.85
Fraction population that moves (\%)	1.67
Change in average prices (\%)	2.55
Welfare gain (\%)	0.026

Optimal Spatial Tax

Optimal Spatial Tax

Constrained Optimal: Ramsey Taxes

- 2 cities, no gvt. transfers, congestion, amenities, housing prod.
- The Ramsey planner's problem is:

$$
\begin{gathered}
\max _{\left\{t_{j}\right\}} \sum_{j} u_{j} l_{j} \\
\text { s.t. }\left.\sum_{j} A_{j} t_{j}\right|_{j} ^{\gamma}=G, \quad u_{j}=u_{j^{\prime}}, \quad \sum_{j} \iota_{j}=\mathcal{L}
\end{gathered}
$$

Optimal Spatial Tax

Constrained Optimal: Ramsey Taxes

- 2 cities, no gvt. transfers, congestion, amenities, housing prod.
- The Ramsey planner's problem is:

$$
\begin{gathered}
\max _{\left\{t_{j}\right\}} \sum_{j} u_{j} l_{j} \\
\text { s.t. } \sum_{j} A_{j} t_{j} j_{j}^{\gamma}=G, \quad u_{j}=u_{j}, \quad \sum_{j} l_{j}=\mathcal{L}
\end{gathered}
$$

- For any ψ, the optimal taxes $\exists G^{\star}$ such that:
- for $G<G^{\star}$: optimal Ramsey tax higher in big city;
- for $G>G^{\star}$: optimal Ramsey tax lower in big city

Constrained Optimal: Ramsey Taxes
 Role of G

- G is source of inefficiency (disappears from the economy)
- $G \uparrow \Rightarrow$ tax more productive city less
- Productive resources to pay G : efficient from work in big city
$\rightarrow \quad G \uparrow \Rightarrow$ optimal urbanization \uparrow

Constrained Optimal: Ramsey Taxes

Equal housing bond: $\psi=0$

Figure: A. Optimal taxes $t_{1}, t_{2} ;$ B. Population $I_{1}, l_{2} ;$ C. Output. $\left(A_{1}=1, A_{2}=2, \mathcal{L}=100, \alpha=0.31, \psi=0\right)$

Constrained Optimal: Ramsey Taxes

Zero measure landlords: $\psi=1$

Figure: A. Optimal taxes t_{1}, t_{2}; B. Population t_{1}, l_{2}; C. Ouput. $\left(A_{1}=1, A_{2}=2, \mathcal{L}=100, \alpha=0.31, \psi=1\right)$

Constrained Optimal: Ramsey Taxes

Zero measure landlords

- When land ownership is concentrated
$\rightarrow \quad$ No effect on productivity
- More people in big cities \Rightarrow higher value of land (no value to utilitarian planner)
$\rightarrow \quad \psi \uparrow \Rightarrow$ optimal urbanization \downarrow

Constrained Optimal: Ramsey Taxes

Benchmark: $\psi=0.5$

Figure: A. Optimal taxes t_{1}, t_{2}; B. Population $t_{1}, l_{2} ;$ C. Ouput. $\left(A_{1}=1, A_{2}=2, \mathcal{L}=100, \alpha=0.31, \psi=0.5\right)$

Optimal Spatial Tax

Unconstrained Optimal

- The planner chooses the bundles l_{j}, c_{j}, h_{j} to maximize Utilitarian welfare:

$$
\begin{gathered}
\max _{l_{j}, c_{j}, h_{j}} \sum_{j} c_{j}^{1-\alpha} h_{j}^{\alpha} l_{j} \\
\text { s.t. } \sum_{j} c_{j} l_{j}+\sum_{j} K_{j}+G=\sum_{j} A_{j} l_{j}, \quad h_{j} l_{j}=H_{j}, \quad \sum_{j} l_{j}=\mathcal{L} .
\end{gathered}
$$

- Solution:
- Equate $M U_{j}$ and $M P_{j}$ (Ramsey: $M U, M P \neq$ across cities)
\Rightarrow Few in small city: unproductive, large consumption

Optimal Spatial Tax

Unconstrained Optimal

Figure : $A_{1}=1, A_{2}=2, \mathcal{L}=100, \alpha=0.31, u=c^{0.8}$:

Optimal Spatial Tax

Lotteries

- Constrained optimal: utility equal. \neq marginal utility equal. With mobility (Ramsey): tradeoff productivity-utility (low G):
- too little consumption in small cities
- too little production in large cities
- Can we implement first best in this economy?
- Yes, with lotteries (as in labor supply - Rogerson)
- Maybe not in a static world, but over life cycle
- But:
- What with those who live in NY MSA for their whole life?
- Lottery with zero probability if $\gamma=1$...

Optimal Spatial Tax

Sensitivity: Equal Taxes

Sensitivity Analysis

Land Ownership I

Outcomes	Benchmark	All bond	All landlord
	$\psi=0.5$	$\psi=0$	$\psi=1$
Optimal τ	0.046	-0.067	0.134
Output gain (\%)	6.92	16.93	-1.31
Population top 5 cities (\%)	3.85	9.04	-0.75
Fraction population that moves (\%)	1.67	3.90	0.33
Change in average prices (\%)	2.55	6.34	-0.47
Welfare gain (\%)	0.026	0.14	0.001

Sensitivity Analysis

Land Ownership II

- Asset distribution to reflect owner occupied housing rate 67%
- Generates ex post heterogeneity
- Short cut (but land is not correctly priced!):

$$
T_{j}=\theta \frac{r_{j} L_{j}}{I_{j}}+(1-\theta) \frac{\sum_{j} r_{j} L_{j}}{\sum_{j} I_{j}}
$$

instead of landlords: get equal share of land value in the city

- "as if" within city redistribution

Sensitivity Analysis

Land Ownership II

Outcomes	Benchmark $\psi=0.5$	owner occupied Optimal τ Output gain (\%) $0^{0.046}$
Population top 5 cities (\%)	6.92	0.061
Fraction population that moves (\%)	3.85	5.78
Change in average prices (\%)	1.67	3.23
Welfare gain (\%)	2.55	1.40

Sensitivity Analysis

Initial Tax Policy

		$\lambda=0.9$					$\lambda=\mathbf{0 . 8 5}$	$\lambda=0.815$		
τ	0.053	0.12	0.2	0.053	$\mathbf{0 . 1 2}$	0.2	0.053	0.12	0.2	
Optimal τ^{*}	0.0092	0.0133	0.0153	0.0429	$\mathbf{0 . 0 4 5 7}$	0.0490	0.0969	0.0990	0.1010	
Output gain (\%)	3.78	9.50	16.98	0.91	$\mathbf{6 . 9 2}$	14.53	-4.21	2.11	10.22	
Pop top 5 (\%)	2.13	5.23	9.07	0.52	3.85	7.83	-2.46	1.20	5.61	
Pop moves (\%)	0.93	2.26	3.91	0.23	$\mathbf{1 . 6 7}$	3.38	1.07	0.52	2.43	
Avg. prices (\%)	1.40	3.53	6.30	0.33	$\mathbf{2 . 5 5}$	5.34	-1.53	0.77	3.71	
Welfare gain (\%)	0.0082	0.0512	0.1499	0.0004	$\mathbf{0 . 0 2 6 4}$	0.1090	0.0103	0.0024	0.0520	

Sensitivity Analysis

Fixed Land Area (5000 Km^{2})

Sensitivity Analysis

Fixed Land Area (5000km²)

Outcomes	Benchmark	Fixed Land Area
Optimal τ	0.046	0.059
Output gain (\%)	6.92	5.17
Population change top 5 cities (\%)	3.85	2.88
Fraction Population that Moves (\%)	1.67	1.30
Change in average prices (\%)	2.55	2.56
Welfare gain (\%)	0.026	0.016

Sensitivity Analysis

No Rebate of Tax Revenue ($\phi=0$)

Outcomes	Benchmark	No Tax Rebate
Optimal τ	0.046	0.045
Output gain (\%)	6.92	7.43
Population change top 5 cities (\%)	3.85	4.12
Fraction population that moves (\%)	1.67	1.79
Change in average prices (\%)	2.55	2.89
Welfare gain (\%)	0.026	0.030

The Role of Heterogeneity

Heterogeneity in:

1. Housing asset holdings
2. Skills: $\tau^{U S}=0.12$? Redistribution heterogeneous agents
\Rightarrow Role of a city-specific tax

Concluding Remarks

- Federal Taxation can lead to spatial misallocation
- Taxes location specific \Rightarrow optimal Ramsey tax not flat
- Gvt. spending $G \uparrow \Rightarrow$ tax big city \downarrow
- Asset concentration $\uparrow \Rightarrow$ tax big city \uparrow
- US benchmark economy, optimal tax:

1. Tax big cities more: $\tau^{\star} \sim 0.04$ (less than current)
2. Large effects on output (6.9\%) and population (1.67\%)
3. Small effects on welfare
\Rightarrow Big GE effects from gvt. spending and ownership structure

Optimal Spatial Taxation Are Big Cities Too Small?

Jan Eeckhout* and Nezih Guner\&

*University College London, Barcelona GSE-UPF ${ }^{\text {\& }}$ ICREA-MOVE, Autonoma, and Barcelona GSE

Wharton

November 4, 2014

