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Introducing the Topic

• Labor markets: principal ingredient in applied research

• Main aspects:
• determination and distribution of wages
• allocation of workers to jobs
• unemployment

• Study the theoretical underpinnings for analyzing labor
markets:

1. allocation process of skilled workers to jobs of different
productivity to explain wages: matching

2. market frictions as an equilibrium phenomenon to explain
unemployment: search



Heterogeneity/Diversity in Economics

• Heterogeneity/diversity is hallmark of economic exchange

• Identical agents ⇒ no trade (often: buyers vs. sellers)

• Here: even within class of buyers, workers, firms: different
preferences and/or endowments
• House prices depend on characteristics of the occupants,

location and the dwelling itself
• Assets in stock market depend on many characteristics, most

notably mean and variance
• Labor markets: salaries vary with experience, skill of worker,

and productivity of job

• Trade: 6= prices for different goods, from supply & demand



Centralized Trade

• The Pioneers (1975 Nobel prize)
• Kantorovich (1939): Optimal allocation of resources: linear

programming solution to optimized production
• Koopmans: general equilibrium; prices allocate resources

• Market Design and Implementation: 2012 Nobel prize
• Lloyd Shapley
• Al Roth

• Matching:
• (Non-)divisibilities, 1/2 sides, with/without price competition
• Examples: VC/startup, worker/firm, marriage
• Applications without prices: Boston school choice, NRMP

(Roth), On-line dating, Kidney Exchange,...
• With prices: e.g., IPO, stock market, Spectrum Auctions,...



Centralized ⇒ Decentralized Trade

• Central. trade: Walr. auctioneer; market place (order book)

• Decentralized trading: market and information frictions

• Search can explain:
• lengthy duration of trade: equilibrium unemployment,

time-to-sell in housing market
• price/wage dispersion for homogenous products

• Random search:

1. trading partners meet
2. determine price
⇒ Nash bargaining inefficient (Hosios 1990)

• Directed search. Reverse order:

1. firms commit to price
2. workers choose with whom to trade
⇒ frictions from coordination; constr. efficient (Moen 1997)



Centralized ⇒ Decentralized Trade

• Like frictionless trade, gains from search due to heterog.

• Heterogeneity on both sides

• Complementarities: force towards PAM

• Decentralized trading: force towards NAM

• Provide cross-sectional “insurance”: maximize probability high
types match; minimize probability low types match

• Therefore: stronger than supermodularity to induce PAM



What is Assortative Matching?

• Likes match with likes: looks, size, ...
• PAM: Positive Assortative Matching
• NAM: Negative Assortative Matching

From biology: Assortative Mating on phenotype (any
observable trait). Trade-off:

Stronger (sexual) selection (PAM) ⇒ specialization ↑ may
perform better in given environment
NAM ⇒ genetic diversity allows species to adapt in changing
environment – intertemporal insurance

Natural selection: PAM is disruptive; NAM is stabilizing

Infamous examples:

lumper potato disease ⇒ famine Ireland
Recently: PAM among computer scientists in Silicon Valley ⇒
Asperger syndrome (autism) ↑
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Assortativeness in Economics

• Likes match with likes. Economic evidence:
• Jobs-workers, coworkers, marriage,...

• Underlying determinants:
• Technology? Common preferences? Preference for the best?

Due to trading (same time, same place)? ...
• Complementarities between different types

• Steven Pinker’s definition of love

• I “equilibrium” you

• Why does it matter?
• Indicates the value of common characteristics,...
• ...and loss from mismatch
• Example Unemployment Insur.: incentives to find “right” job
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I. Frictionless Matching



Two-sided Matching
NTU

• How does matching differ from standard markets:

1. Centralized trade, no Walrasian auctioneer: no price signal
2. preferences over agents, not goods
3. indivisibilities

• Direct application:
• On-line dating (eHarmony.com, OkCupid.com,...)
• Market design NIMP: ACP assigns residents to hospitals
• Kidney Exchange
• School Choice: Boston, New York,...
• ...

• Initial analysis: Gale and Shapley (1962):

1. pose the problem;
2. they provide an algorithm for the solution;
3. show existence;



One-to-one matching

• Two disjoint sets W = {w1, ...,wp} and M = {m1, ...,mn}
• Match in pairs, allow for the possibility of being single

• Agents have preferences over the members of the other sex:
ordered list (complete and transitive):

P(m) = w1,w3, [m,wp] , ...,w2

where [x , y ]: weak preferences. Similar for women: P(w).

• Denote P = {P(m1), ...,P(w1), ...} the preference profile. A
marriage market is then denoted by (W,M,P).

• A particular men-to-women allocation, called matching µ(x):

Definition
A matching µ is a one to one correspondence from W ∪M onto
itself (µ2(x) = x) such that if µ(m) 6= m then µ(m) ∈ W and if
µ(w) 6= w then µ(w) ∈M



One-to-one matching

• A matching µ is blocked by an individual k if k prefers being
single to being matched with µ(k) , i.e. k �k µ(k)

• A matching µ is called individually rational if each agent in µ
is acceptable (i.e. µ is not blocked by any individual agent).

• A matching µ is blocked by a pair of agents (m,w) if
w �m µ(m) and m �w µ(w).

Definition
A matching µ is stable, if it is not blocked by any individual or any
pair of agents.

Theorem
(Gale and Shapley 1962). A Stable matching exists for every
marriage market.



One-to-one matching

• Proof uses the Deferred Acceptance Algorithm (DAA). Starts
with one side of the market making proposals (say men):

1. a. Each man proposes to his first choice (if acceptable ones)
b. Each woman “holds” the most preferred
...

k. a. Any man rejected at step k − 1 makes a new proposal to his
most preferred acceptable mate who hasn’t rejected him yet
(make no proposal if no acceptable choices remain)
b. each woman holds most preferred offer to date, rejects rest
...

k+l STOP when no further proposals are made and match any
woman to the man whose proposal she is holding.

• Weak preferences: break ties arbitrarily (e.g. alphabetical,...)

• With finite set of men, women, this algorithm is finite, and
hence always stops



One-to-one matching

• This algorithm gives rise to a stable matching

• Suppose not, m can do better, i.e. m prefers w to his current
match µ(m). Then:

1. w �m µ(m)
2. m must have proposed to w before proposing to µ(m)
3. m must have been rejected by w
4. as a result, µ(w) �w m
5. no blocking pair
6. match is stable



One-to-one matching

• Example. Consider (W,M,P) where

P(m1) = w1,w2,w3,w4 P(w1) = m2,m3,m1,m4,m5

P(m2) = w4,w2,w3,w1 P(w2) = m3,m1,m2,m4,m5

P(m3) = w4,w3,w1,w2 P(w3) = m5,m4,m1,m2,m3

P(m4) = w1,w4,w3,w2 P(w4) = m1,m4,m5,m2,m3

P(m5) = w1,w2,w4,m5

• Then using the DAA:

w1 w2 w3 w4 (mi )

m1,m4,m5 m2,m3

m1 m5 m3 m4,m2

m1 m2,m5 m3 m4

m1 m2 m3 m4 m5

• The stable matching is

µM =
w1 w2 w3 w4 (m5)
m1 m2 m3 m4 m5
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One-to-one matching

• Similarly, when women make offers, the stable matching:

µW =
w1 w2 w3 w4 (m5)
m2 m3 m4 m1 m5

• Implications from this example:

1. In general the set of stable matchings is not a singleton
2. All m weakly prefer µM to µW , and the opposite for women;

i.e. for all m : µM �m µW and for all w : µW �w µM

⇒ There is a conflict between the two sides of the market as to
who can make the offer!

Theorem
(Gale and Shapley). When all men and women have strict
preferences, there always exists an M-optimal stable matching, and
a W -optimal stable matching. Furthermore, the matching µM
produced by the DAA with men proposing is the M-optimal stable
matching. The W -optimal stable matching is the matching µW
produced by the DAA when women propose.



Two-sided Matching
Sketch of Proof

Terminology: w is achievable for m if there is some stable
matching µ such that µ(m) = w

• Inductive step k. Suppose no m has been rejected by an
achievable w , and at k, w rejects m and holds on to some
other m′ ⇒ w is not achievable for m

• Now consider µ with µ(m) = w and µ(m′) achievable for m′.
Cannot be stable: by inductive step, (m′,w) is blocking pair

• Let µ �M µ′ denote all men like µ at least as well as µ′, with
at least one strict. Then �M is a partial order on the set of
matchings, representing the common preferences of the men.
Similarly, �F common preference of women



One-to-one matching

Theorem
(Knuth) When all agents have strict preferences, the common
preferences of the two sides of the market are opposed on the set
of stable matchings: if µ and µ′ are stable matchings, then all men
like µ at least as well as µ′ if and only if all women like µ′ at least
as well as µ. That is, µ �M µ′ if and only if µ′ �W µ.

• From the definition of stability.

• The best outcome for one side of the market is the worst for
the other.



Lattice Property

• Preliminaries. Set L endowed w. partial order ≥; and X ⊂ L

• a ∈ L is the upperbound of X if a ≥ x , ∀x
• supX least upper bound of X ; inf X greatest lower bound

• Denote by the binary relations “ sup” of any two elements
x ∨ y (“join”) and “ inf” of any two elements x ∧ y (“meet”)

• For any 2 matchings µ, µ′, and for all m,w define
λ = µ ∨M µ′ as function that assigns each man his more
preferred of the two matches; each woman her less preferred:

λ (m) = µ(m) if µ(m) �m µ′(m) and

λ (m) = µ′(m) otherwise

λ (w) = µ(w) if µ(m) ≺w µ′(w) and

λ (w) = µ′(w) otherwise

• Define ν = µ ∧M µ′ analogously, by reversing the preferences



Lattice Property

Theorem
(Lattice Theorem – Conway). When all preferences are strict, if µ
and µ′ are stable matchings, then the functions λ = µ ∨M µ′ and
ν = µ ∧M µ′ are both matchings. Furthermore, both are stable.

• Think of λ: ask men to point to preferred mate from 2 stable
matchings, women to less preferred mate. Then theorem says:

1. that no two men will point to the same woman (this follows
from the stability of µ and µ′.

2. Every woman points back at the man pointing at her (not
immediate to prove)

3. the resulting match is stable (because we compare across
stable matchings µ and µ′)

• The fact that operations ∨M and ∧M produce a stable
matching from a pair of stable matchings implies that set of
stable matchings has an algebraic structure called a lattice.



Lattice Property

Definition
A lattice is a partially ordered set L, any 2 of whose elements x
and y have a sup (i.e. x ∨ y) and an inf (i.e. x ∧ y). A lattice is
complete when each of its subsets X has a sup and an inf in L.

A lattice is distributive iff

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

∀x , y , z ∈ L.

Theorem
(Conway). When all preferences are strict, the set of stable
matchings is a distributive lattice under the common order of man,
dual to the common order of women.



Lattice Property
Example

• Consider the following marriage market (W,M,P) where

P(m1) = w1,w2,w3,w4 P(w1) = m4,m3,m2,m1

P(m2) = w2,w1,w4,w3 P(w2) = m3,m4,m1,m2

P(m3) = w3,w4,w1,w2 P(w3) = m2,m1,m4,m3

P(m4) = w4,w3,w2,w1 P(w4) = m1,m2,m3,m4

• Then using the DAA:

µM =
w1 w2 w3 w4

m1 m2 m3 m4

and

µW =
w1 w2 w3 w4

m4 m3 m2 m1



Lattice Property
Example

• There are 10 stable matchings:

w1 w2 w3 w4

µM m1 m2 m3 m4

µ2 m2 m1 m3 m4

µ3 m1 m2 m4 m3

µ4 m2 m1 m4 m3

µ5 m3 m1 m4 m2

µ6 m2 m4 m1 m3

µ7 m3 m4 m1 m2

µ8 m4 m3 m1 m2

µ9 m3 m4 m2 m1

µW m4 m3 m2 m1

⇒
µ2 ∧M µ3 = µ4 µ2 ∨M µ3 = µM
µ5 ∧M µ6 = µ7 and µ5 ∨M µ6 = µ4

µ8 ∧M µ9 = µW µ8 ∨M µ9 = µ7



Lattice Property

• Now consider the “ranking” of stable matches relative to any
(including) non-stable matches.

Theorem
Weak Pareto optimality for the men: There is no individually
rational matching µ (stable or not) such that µ �m µM for all
m ∈M
• Proof uses DAA and by contradiction



Uniqueness

• How relevant is this multiplicity of stable matchings. We show
a uniqueness theorem that provides a sufficient condition

• An example. Vertical heterogeneity, i.e. common preferences
of each member of a sex over the other sex:

P(m1) = w1,w2,w3 P(w1) = m1,m2,m3

P(m2) = w1,w2,w3 P(w2) = m1,m2,m3

P(m3) = w1,w2,w3 P(w3) = m1,m2,m3

• Then from the DAA

µM =
w1 w2 w3

m1 m2 m3
= µW



Uniqueness

Theorem
Consider two ordered sets W = (Xi ) and M = (xi ). If the
preference profile satisfies

∀Xi ∈ W : xi �Xi
xj ,∀j > i

∀xi ∈ M : Xi �xi Xj ,∀j > i

then there is a unique stable matching µ∗(Xi ) = xi , ∀i

• Proof. Suppose there exists a stable matching µ′ 6= µ∗, i.e.
with for some i µ′(Xi ) = xk , k 6= i . Then from stability, there
exists some j 6= k such that µ′(xj) = Xl , l 6= j . Let

λ = min{i : µ′(Xi ) = xk , k 6= i}
γ = min{j : µ′(xj) = Xl , l 6= j}

Since µ∗(Xλ) = xγ , it follows that λ = γ.



Uniqueness

• Then µ′(Xi ) = xk implies λ < k and µ′(xλ) = Xl implies
λ < l . Now under preferences as above, it follows that

xλ �Xλ xk

Xλ �xλ Xl

so that Xλ and xλ form a blocking pair against µ′, and hence
µ′ is not a stable matching. A contradiction.

• Intuition

1. Starting at agents m and w with index i = 1 we can assign
those two agents (no blocking pair).

2. Now, i = 2, who may like 1 more but cannot get them ⇒ will
match given preferences

3. This unravels all the way down
4. Note that there is no restriction on the relative ranking of any

two men k , l for a woman i as long as k , l are either ”above”
or ”below” i .



Uniqueness

• Vertical Heterogeneity:

∀Xi ∈ W : xk �Xi
xj ,∀k < j

∀xi ∈ M : Xk �xi Xj , ∀k < j

• Horizontal Heterogeneity:

∀Xi ∈ W : xi �Xi
xj ,∀j

∀xi ∈ M : Xi �xi Xj ,∀j
• Sufficient condition, not necessary. Counter example:

P(m1) = w3,w1,w2,w4 P(w1) = m2,m1,m3,m4

P(m2) = w4,w4,w3,w1 P(w2) = m1,m2,m3,m4

P(m3) = w1,w3,w2,w4 P(w3) = m2,m3,m4,m1

P(m4) = w3,w4,w2,w1 P(w4) = m3,m4,m1,m2

• Note this profile does not satisfy preference condition since
w3 �m1 w1 and m2 �w1 m1



Strategic Behavior

• So far: preference orderings are common knowledge

• If preferences are private information, stable matching is
strategy-proof if ∃ no incentive to misrepresent preferences

• An example (same as before):

P(m1) = w1,w2,w3,w4 P(w1) = m2,m3,m1,m4,m5

P(m2) = w4,w2,w3,w1 P(w2) = m3,m1,m2,m4,m5

P(m3) = w4,w3,w1,w2 P(w3) = m5,m4,m1,m2,m3

P(m4) = w1,w4,w3,w2 P(w4) = m1,m4,m5,m2,m3

P(m5) = w1,w2,w4,m5

• with stable matching

µM =
w1 w2 w3 w4 (m5)
m1 m2 m3 m4 m5



Strategic Behavior

• Observe that w1 matches to m1, her third choice

• Consider preferences P′, in which all agents except w1 state
their preferences as before, but w1 misrepresents:

P ′(w1) = m2,m3,m4,m5,m1

in which case w1 is better off:

µ′M =
w1 w2 w3 w4 (m5)
m3 m1 m2 m4 m5

• Misrepresenting may pay, how can we assure mechanisms such
that honesty works? Incentives in the DAA? Welfare?

Theorem
(Impossibility Theorem – Roth). No stable matching mechanism
exists for which stating the true preferences is a dominant strategy
for every agent.



Strategic Behavior

Theorem
If preferences are strict, and there is more than one stable
matching, then at least one agent can profitably misrepresent his
or her preferences, assuming the others tell the truth. (This agent
can misrepresent in such a way as to be matched to his or her
most preferred achievable mate under the true preferences at every
stable matching under the mis-stated preferences.)

Theorem
(Dubins and Freedman; Roth) The mechanism that yields the
M-optimal stable matching makes it a dominant strategy for each
man to state his true preferences. (Similar for W-optimal.)

Corollary
If set of stable matchings is unique, then DAA makes it dominant
strategy for each man and woman to state true preferences

• More general matching environment (and iff): Sönmez (1999)



Other Matching Problems
Roommate Problem

• Allocating freshmen to rooms in a dorm;
• from one joint set
• multiple agents may be assigned

• Main issue: existence not guaranteed. Example (match pairs):

P(a) = b, c , d P(c) = a, b, d
P(b) = c, a, d P(d) = any

• All candidate matchings blocked

µ1 =
c a

b d
blocked by (c, a)

µ2 =
a d

b c
blocked by (b, c)

µ3 =
b a

d c
blocked by (a, b)



Other Matching Problems
Many-to-one Matching

• Firms and workers; colleges and students;...

• Not simply matching worker to job several times where there
is complementarity between job and worker

• Key is the complementarity/subsitutability between workers

• E.g. b, c complements ⇒ a �i b and {b, c} �i {a, c}
• Gross Substitutes: see below



NTU – Applications

• The Labor Market for Medical Interns
• Roth, A. 1984, “The Evolution of the Labor Market for

Medical Interns and Residents: A Case Study in Game Theory”
Journal of Political Economy

• Roth, A. 1986, “On the Allocation of Residents to Rural
Hospitals: A General Property of Two-sided Matching
Markets,” Econometrica

• Roth, A. 1991, “A Natural Experiment in the Organization of
Entry Level Labor Markets: Regional Markets for New
Physicians and Surgeons in the United Kingdom,” American
Economic Review

• Roth, A. and E. Peranson, 1999, “The Redesign of the
Matching Market for American Physicians,” American
Economic Review



NTU – Applications

• School Choice
• Ergin, H. and T. Sönmez, 2006, “Games of School Choice

under the Boston Mechanism,” Journal of Public Economics
• Abdulkadiroglu, A. and T. Sönmez, 2003, “School Choice: A

Mechanism Design Approach,” American Economic Review
Abdulkadiroglu, A., P. Pathak, A. E. Roth, and T. Sönmez:
2005, “The Boston Public School Match,” American
Economic Review P&P

• Kidney Exchange
• Roth, A. E., T. Sönmez, and U. Ünver, 2004 “Kidney

Exchange,” Quarterly Journal of Economics
• Roth, A. E., T. Sönmez, and U. Ünver: 2005a, “A Kidney

Exchange Clearinghouse in New England,” American Economic
Review P&P

• Roth, A. E., T. Sönmez, and U. Ünver: 2005b, “Pairwise
Kidney Exchange,” Journal of Economic Theory



Two-sided Matching
TU – Introducing Wages

• Less attractive agents may compensate the more attractive
one to form a match

• Labor market: wage

• But also non-monetary transfers:
• Services: transfer with services (cleaning for roommates, child

care in marriage,...)
• Presents
• In traits when multidimensional: she is attractive but smokes,

he is rich but has a temper,...



Two-sided Matching
TU – Introducing Wages

• From ordinal to cardinal preferences: need to assign valuations

• Example. Preference order (with associated utility):

P(x1) = y1(5), y2(3), y3(2) P(y1) = x2(3), x1(2), x3(1)
P(x2) = y1(3), y2(2), y3(1) P(y2) = x1(2), x2(1), x3(0)
P(x3) = y1(7), y2(2), y3(1) P(y3) = x1(4), x2(3), x3(1)

• There are two stable equilibrium allocations:

µ(x1, x2, x3) = (y1, y2, y3) and (y2, y1, y3)

with payoffs
(5, 2, 1)
(3, 1, 1)

and
(3, 3, 1)
(2, 2, 1)



Two-sided Matching: TU

• Allowing for transfers, we can write this as

f (x , y) =




5 + 3 3 + 2 2 + 1
2 + 3 3 + 2 1 + 3
7 + 1 2 + 0 1 + 1


 =




8 5 3
5 5 4
8 2 2




Allocation different from any of those under NTU!

Stability: payoffs (w1,w2,w3) and (π1, π2, π3) must satisfy:

w1 + π1 ≥ 8 w1 + π2 = 5 w1 + π3 ≥ 3
w2 + π1 ≥ 5 w2 + π2 ≥ 5 w2 + π3 = 4
w3 + π1 = 8 w3 + π2 ≥ 2 w3 + π3 ≥ 2

⇒
0 ≤ w1 − w3 ≤ 3
0 ≤ w2 − w1 ≤ 1
2 ≤ w2 − w3 ≤ 3

e.g. w1 = 3,w2 = 4,w3 = 1 and π1 = 7, π2 = 2, π3 = 0

Unique allocation, continuum prices (discrete outside option)
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Two-sided Matching: TU

• 2 disjoint sets X (m workers) and Y (n firms)

• Payoffs: ∀(x , y) ∈ X × Y : ∃f (x , y) ∈ R+

• An assignment game is then completely defined by (X ,Y, f )

Definition
A feasible assignment for (X ,Y, f ) is a matrix µ = (µ(x , y)) (of
zeros and ones) that satisfies:

∑

x

µ(x , y) ≤ 1

∑

y

µ(x , y) ≤ 1

µ(x , y) ≥ 0

• Then µ(x , y) = 1 if (x , y) match and µ(x , y) = 0 otherwise



Two-sided Matching: TU

Definition
A feasible assignment is optimal for (X ,Y, f ) if, for all feasible
assignments µ′,

∑
x ,y f (x , y)µ(x , y) ≥∑x ,y f (x , y)µ′(x , y)

• Example.

f (x , y) =




10 12 7
6 8 2
5 5 9




then

µ1 =




1 0 0
0 1 0
0 0 1


 and µ2 =




0 1 0
1 0 0
0 0 1




• Both optimal:
∑

x ,y f (x , y)µ(x , y) = 27 in both cases



Two-sided Matching: TU

Definition
The pair of vectors (w , π), with w ∈ Rm and π ∈ Rn is called a
feasible payoff for (X ,Y, f ) if there is a feasible assignment µ such
that ∑

x∈X
w(x) +

∑

y∈Y
π(y) =

∑

x∈X ,y∈Y
f (x , y) · µ(x , y)

Definition
A feasible outcome ((w , π), µ) is stable if

1. w(x) ≥ 0, π(y) ≥ 0 (individual rationality);

2. w(x) + π(y) ≥ f (x , y),∀(x , y) ∈ X × Y (no blocking pair)



Optimal Assignment

We can then show the following theorem:

Theorem
(Shapley and Shubik). Let (X ,Y, f ) be assignment game. Then:

1. set of stable outcomes and core of (X ,Y, f ) are same;

2. the core of (X ,Y, f ) is the (nonempty) set of solutions of the
dual LP of the corresponding assignment problem.

Corollary
If x is an optimal assignment, then it is compatible with any stable
payoff (w , π)

Corollary
If ((w , π), µ) is a stable outcome, then µ is an optimal assignment.

From
∑

x∈X w(x) +
∑

y∈Y π(y) =
∑

x∈X ,y∈Y f (x , y) · µ(x , y) and
stability: w(x) + π(x , y) ≥ f (x , y), for all (x , y).



Lattice Property

• Core with partial order �X forms a complete lattice (dual
with ordering �Y).

• A trivial example. 2 men, 2 women, with payoff matrix

f (x , y) =

(
5 2
3 1

)
⇒ unique allocation µ =

(
1 0
0 1

)

• Set of payoffs that are a stable outcome must satisfy

1 ≤ w(1)− w(2) ≤ 2

w(1),w(2) ≥ 0.

⇒ ∃ continuum of equilibria. For example E1:
(w(1),w(2)) = (1, 0), and E2: (w(1),w(2)) = (2, 1)

E2 �X E1

E1 �Y E2



Assortative Matching
The Basic Model

• Assignment Game

• Worker type x , Γ (uniform)

• Job type y , Υ (uniform)

• Output f (x , y) ≥ 0

• Common rankings: fx > 0 and fy > 0

• Cross-partials fxy : key for monotone matching

• Examples:

f +(x , y) = αxθyθ and f −(x , y) = αxθ(1− y)θ + g(y),



The Basic Model
Equilibrium

• Assignment of workers to firms: µ(x) = y (note change of
notation from matrix, where µ(x , y) was defined on X × Y)

• Wage schedule: w(x)

• Profit schedule: π(y)

• Stable Equilibrium: µ and payoffs such that ∀x , y :

w(x) + π(y) ≥ f (x , y)

w(x) + π(µ(x)) = f (x , µ(x))



The Basic Model

• As a competitive equilibrium (TU: core = GE). Given wage
schedule w(x), firm maximization:

max
x

f (x , y)− w(x)

• FOC:

fx(x , y)− ∂w(x)

∂x
= 0

• Let w?(x) be the equilibrium wage of worker x

w?(x) =

∫ x

0
fx(x̃ , µ(x̃))dx̃ + w0,

• Profits:

π?(y) =

∫ y

0
fy (µ−1(ỹ), ỹ)dỹ − w0



The Basic Model
Assortativeness: SOC

• What is the equilibrium allocation µ? Follows from SOC:

fxx(x , y)− wxx(x) < 0

• wxx?⇒ derivative of FOC at y = µ(x):

fxx(x , µ(x)) + fxy (x , µ(x))
dµ(x)

dx
− wxx(x) = 0

• SOC is satisfied provided (µ differentiable)

fxy (x , µ(x))
dµ(x)

dx
> 0.

• PAM: dµ(x)
dx > 0 if fxy > 0 NAM: dµ(x)

dx < 0 if fxy < 0



Supermodularity

• Supermodularity

f (x2, y2) + f (x1, y1) ≥ f (x2, y1) + f (x1, y2)

• f (x , y) differentiable: fxy (x , y) ≥ 0

• Stronger Degree of SM: g concave ⇒ g ◦ f supermodular:

g ◦ f (x2, y2) + g ◦ f (x1, y1) ≥ g ◦ f (x2, y1) + g ◦ f (x1, y2)

• f (x , y) differentiable:

∂2g(f (x , y))

∂x∂y
≥ 0 ⇐⇒ fxy (x , y)f (x , y)

fx(x , y)fy (x , y)
≥ −g ′′(f (x , y))f (x , y)

g ′(f (x , y))

• RHS: Arrow-Pratt measure of the transform g
• Examples:

1. g(f ) linear ⇒ RHS=0
2. g(f ) = log(·)⇒ RHS=1
3. g(f ) = n

√
f ⇒ RHS=1− n−1



Supermodularity

f (x, y)

x

y

y

xy x

f (x, y)

f (x, y)

f (x, y)

f (x, y)

Supermodular: fxy > 0



Supermodularity

f (x, y)

x

y

y

xy x

f (x, y)

f (x, y)

f (x, y)

f (x, y)

g ◦ f -sup.: fxy > −g ′′(f ))f
g ′(f )

fx fy
f



Supermodularity

f (x, y)

x

y

y

xy x

f (x, y)

f (x, y)

f (x, y)

f (x, y)

log f -sup.: fxy > 1fx fy/f



Examples of Supermodular Functions

• Function of sum: V (x + y)
• V convex ⇒ supermodular
• V concave ⇒ submodular

Examples:
• (x + y)α: SM for α > 1; neither root- nor log-SM for α < 2
• (x + y)α: root-SM for α > 2, never log-SM
• βx+y : log-SM

• max−min Operators:
• V (x , y) = max{x , y}: weakly log-SBM
• V (x , y) = min{x , y}: weakly log-SPM (e.g. “O-Ring”)



Examples of Supermodular Functions
max operator is weakly SBM

• Need to verify that:

V (x , y)V (x , y) ≤ V (x , y)V (x , y)

where V (x , y) = max{x , y}
• Let x > x and y > y . Then 6 possibilities:

1. x > y > x > y ⇒ x · x < x · y

2. x > y > y > x ⇒ x · y < x · y
3. x > x > y > y ⇒ x · x = x · x
4. y > x > x > y ⇒ y · x < x · y
5. y > x > y > x ⇒ y · y < x · y
6. y > y > x > x ⇒ y · y = y · y
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Supermodularity and Matching
Local Supermodularity

Supermodularity is sufficient for PAM, not necessary.

• Workers: X = {1, 2, 3}; Firms: Y {1, 2, 3}
• Match surplus function: f (x , y) = x · y ; observe fxy (x , y) > 0

• Stable Equilibrium: allocation and payoff vector

• Supermodularity:

∆ = [f (i , j) + f (i + 1, j + 1)]− [f (i , j + 1) + f (i + 1, j)] > 0

f (x , y) =




9 6 3
6 4 2
3 2 1




∆ =

(
1 −1
−1 1

)
, and

∑
f (x , µ(x)) = 14

But. For any distribution, supermodularity is necessary.
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∆ =

(
2 −1
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, and

∑
f (x , µ(x)) = 15

But. For any distribution, supermodularity is necessary.
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Supermodularity and Matching
Generalized Increasing Differences

• The assignment game is very special: linear Pareto frontiers
for matched pairs

• Agents may be risk averse; there may be moral hazard,...

• What are the properties of the assignment when the pairwise
frontiers are non-linear?

• Legros-Newman (2007): Generalized Increasing Differences



Supermodularity and Matching
Generalized Increasing Differences

u(x)

v(y)



Supermodularity and Matching
Generalized Increasing Differences

u(x)

v(y)



Supermodularity and Matching
Generalized Increasing Differences

u(x)

v(y)



Supermodularity and Matching
Generalized Increasing Differences

• Things change if type-dependent preferences ux , vy

• Pareto frontier: vy = φ(x , y , uy ) and ψ(x , y , vx) = φ−1(vy )

• Legros-Newman (2007). GID (discrete). Equivalent for
continuous types (where φ3 < 0)

φ12 >
φ1

φ3
φ23

• GID ⇒ Positive Assortative Matching

• Key: relative slope of frontiers (by pair), not concavity



Supermodularity and Matching
Generalized Increasing Differences

• The firm problem: choose x to maximize φ(x , y , ψ(x)) given
ψ(x), utility (“wage”) of worker x ; φ3 < 0. The FOC

φ1(x , y , ψ) + φ3(x , y , ψ)ψ′(x) = 0

• Properties of equilibrium allocation µ? Follows from SOC:

φ11 + 2φ13ψ
′ + φ33ψ

′2 + φ3ψ
′′ < 0

• But ψ′, ψ′′? Differentiating the FOC evaluated at y = µ(x):

φ11 + φ12µ
′ + φ13ψ

′ + φ13ψ
′ + φ23µ

′ψ′ + φ33ψ
′2 + φ3ψ

′′ = 0

⇒ SOC satisfied provided φ12µ
′ + φ23µ

′ψ′ > 0
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Supermodularity and Matching
Generalized Increasing Differences

• Use FOC to substitute for ψ′

µ′
[
φ12 −

φ1

φ3
φ23

]
> 0

• There is positive assortative matching, i.e., µ′ > 0 provided

φ12 >
φ1

φ3
φ23

• Note equivalent condition: ψ12 >
ψ2
ψ3
ψ13



Supermodularity and Matching
Generalized Increasing Differences

u(x)

v(y)

φ(x, y, v)

φ(x′, y′, v)



Applications
Who matches with whom?

• Common preferences: u(w(x)) and v(π(y)): non-linear, but
no changes

• Risk aversion and Uncertainty: will the risk averse match with
the risk neutral/loving?

• Principal–Agent relations: need non-linear preferences for
standard P/A model; what if P,A differ in skill, risk
aversion,...? Who matches with whom?

• Household public goods

• References: Legros-Newman, Chiappori-Reny, Serfes,
Ackerberg-Botticini,...



Large Firms

• Many to one matching w/ transfers: Kelso-Crawford (1982)

• Workers i = 1, ...,m and firms j = 1, ..., n

• Utility worker i at firm j with salary si is uij (si )

• ∀i ,∃ vector σi ≡ (σi1, ..., σin) where σij lowest salary i would
accept at firm j (= value of unemployment ui0(0))

• For firm j and subset C of workers, Y j(C ) is firm’s income

1. Y j(∅) = 0 (production requires workers)
2. Y j(C ∪ {i})− Y j(C ) > σij for any C which does not contain i

(marginal contribution > value unemployment)

• A matching is a set of disjoint partnerships {j ,C j}
• An outcome (µ, π, s) is a matching µ and for each {j ,C j} an

allocation: Y j(C j) = πj +
∑

i∈Cj
sj

• (µ, π, s) is individually rational if si ≥ σiµ(i) and πj ≥ 0

• Salaries are modeled as discrete variables (pennies)



Large Firms

• An individually rational outcome (µ, π, s) is a core allocation
unless there is a firm j , a subset of workers C and a vector r
of salaries ri for all workers i in C such that

πj < Y j(C j)−
∑

i∈Cj

rj

uiµ(i) < uij(ri )

for all i in C .

• If these two inequalities are satisfied for some (j ,C , r), then
the outcome (µ, π, s) is blocked by (j ,C , r)

• Core may be empty



Large Firms
Empty Core – Example

• 2 firms, j , k, 2 workers 1, 2. Workers’ utility equals their salary

• Firms’ income Y j(C ) and Y k(C ) for subsets of workers is:

Y j({1}) = 4 Y k({1}) = 8
Y j({2}) = 1 Y k({2}) = 5
Y j({1, 2}) = 10 Y k({1, 2}) = 9

• The only matchings at which no worker is unemployed are

µ1 = {j , {1, 2}} , {k} µ3 = {j} , {k , {1, 2}}
µ2 = {j , {1}} , {k , {2}} µ4 = {j , {2}} , {k , {1}}

• All are blocked. For example, µ1 is not stable. Blocked if:
1. sj(1) < 8 since k is willing to offer up to 8.
2. if sj(2) < 5.

• Observe: j earns more from 1 and 2 than the sum from each
worker separately, i.e. complementarity ⇒ j employs 1 at
sj(1) > 4 only if 2 is also employed



Large Firms
Gross Substitutes

• Defintion of GS:
• Let M j(s j) = arg maxC π

j(C ; s j)
• Consider 2 vectors s j , s̃ j and T j(X j) ≡ {i |i ∈ C j and s j = s̃ j}
• Then ∀j , if C j ∈ M j(S j) and s̃ j ≥ s j , then:

∃C̃ j ∈ M j(s̃ j) such that T j(C j) ⊆ C̃ j

• All workers must be gross substitutes to each firm: increases
in other workers’ salaries ; withdraw an offer from a worker
whose salary has not risen

• additive separability of prod. technol. ⇒ GS, but more general

• GS is sufficient, not necessary

• Also relevant in package auctions (see Hatfield and Milgrom)



Sorting in Large Firms

• Background:
• Matching: one-to-one (e.g. Becker 1973) → extensive margin
• Macro / Labor / Trade / Urban / Devel: intensive margin
• Intensive Margin ⇒ Firm Size

• Trade-Off: better workers vs. more workers
• managerial time: “span of control”: Sattinger 75, Lucas 78
• assignment of land, of “distance”, of assets...



Sorting in Large Firms

• Goals:

1. Capture factor intensity in tractable manner (no peer effects)
2. Sorting condition: complementarity quality vs. quantity
3. Characterize firm size, assignment, wages
4. Introduce frictions: unemployment across skills and firm size

• Economic Relevance

1. Characterizing production technology across industries:
Walmart vs. mom-&-pop store; consulting and law firms;...

2. Misallocation debate: output difference across economies
• Firm heterogeneity in productivity → differences in K , p,A

(Restuccia-Rogerson (08), Hsieh-Klenow (10),...)
• Intensive margin and heterogeneity
• Also worker heterogeneity ⇒ skill (mis)allocation and human

capital distribution matter



Sorting in Large Firms

• Goals:

1. Capture factor intensity in tractable manner (no peer effects)
2. Sorting condition: complementarity quality vs. quantity
3. Characterize firm size, assignment, wages
4. Introduce frictions: unemployment across skills and firm size

• Economic Relevance

1. Characterizing production technology across industries:
Walmart vs. mom-&-pop store; consulting and law firms;...

2. Misallocation debate: output difference across economies
• Firm heterogeneity in productivity → differences in K , p,A

(Restuccia-Rogerson (08), Hsieh-Klenow (10),...)
• Intensive margin and heterogeneity
• Also worker heterogeneity ⇒ skill (mis)allocation and human

capital distribution matter



Intensive and Extensive Margin

• Output for given worker type in firm y with resources r :

F (x , y , l , r)

Trade-off between better workers (x) and more (l) workers

• Firm chooses x1, x2, ... and l1, l2... and for each intensity
r1, r2, ...

• Total output of firm y :

F ( x1, y︸︷︷︸
quality

, l1, r1︸︷︷︸
quantity

) + F (x2, y , l2, r2) + · · ·

where r1 + r2 + · · · = 1



The Model

• Population
• Workers of type x ∈ X = [x , x ], distribution Hw (x)
• Firms of types y ∈ Y = [y , y ], distribution H f (y)

• Production of firm y F (x , y , lx , rx)
• lx workers of type x ,rx fraction of firm’s resources
• F increasing in all, concave in last two arguments
• F constant returns to scale in last two arguments
⇒ Denote: f (x , y , θ) = rF

(
x , y , l

r , 1
)
, where θ = l

r

• Could allow for 6= resources: F (x , y , l , r) = F̃ (x , y , l , rT (y))
• Key assumption: no peer effects ⇒ satisfies GS
⇒ Total output:

∫
F (x , y , lx , rx)dx

• Preferences
• transferable utility (additive in output goods and numeraire)
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Literature
Special Cases

• Becker 73: lji = rij → F (x , y ,min{l , r},min{l , r})
• Sattinger 75: lji ≤ rij

t(xi ,yi )
→ F = min

{
l , r

t(x ,y)

}

• Garicano 00: l ≤ r
t(x) → F = y min

{
l , r

t(x)

}

• Lucas 78: Worker input independent of skill F = yg (l)

• Rosen 74: more general; existence
(also, Kelso-Crawford 82, Cole-Prescott 97, Gul-Stacchetti 99, Milgrom-Hatfield 05)

• Roy 51: lji = rij & no factor intensity

• Roy 51+CES: particular functional form for decreasing return

• Frictional Markets: one-on-one matching, competitive search
(Shimer-Smith 00, Atakan 06, Mortensen-Wright 03, Shi 02, Shimer 05, Eeckhout-Kircher 10)



The Model

Hedonic wage schedule w(x) taken as given.

• Optimization:

• Firms maximize: maxlx ,rx
∫

[F (x , y , lx , rx)− w(x)lx ]dx

• Implies: rx > 0 only if
(
x , lx

rx

)
= arg max f (x , y , θ)− θw(x) (?)

• Feasible Resource Allocation:

• R(x , y , θ): resources to any x ′ ≤ x by any y ′ ≤ y with
lx′
rx′
≤ θ.

1. Resource feasibility [R(y |X ,Θ) ≤ H f (y) ∀y ]

2. Worker feasibility [
∫
θ∈Θ

∫
x′≤x

θdR(θ, x ′|Y ) ≤ Hw (x) ∀x ]

• Competitive Equilibrium

is a tuple (w ,R) s.t.

1. Optimality Cond. [(x , y , θ) ∈suppR only if it satisfies (?)]

2. Market Clearing [
∫
θdR(θ|x ,Y ) ≤ hw (x), “=” if w(x) > 0, ∀x ]
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Assortative Matching

Definition (Assortative Matching)
A resource allocation R entails positive (negative) sorting if its support only
comprises points (x , µ(x), θ(x)) with µ′(x) > 0 (< 0).

Main Result:

Proposition (Condition for PAM)
A necessary condition to have equilibria with PAM is that

F12F34 ≥ F23F14

holds along the equilibrium path. The reverse inequality entails NAM.

• Necessary and sufficient for any distribution of x , y .
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Assortative Matching
F12F34 ≥ F23F14

• Interpretation (F34 > 0 by assumption):

1. F12 > 0: bet. manag. produce more w/ bet. workers (Becker)
2. F23 > 0: bet. manag., larger span of control (as in Lucas)
3. F14 > 0: bet. workers produce more w/ manag. time (school?)

• Quantity-quality trade-off by firm y with resources r :

1. F12: better manager manages quality workers better vs.
2. F23: better managers can manage more people
⇒ Marginal increase of better ≷ marginal impact of more workers

• Examples: technological differences across industries, establishments

1. Walmart vs. mom-&-pop store: low x , high y , high θ, θ′ < 0
⇒ F23 > 0, F14 > 0, F12 not too large ⇒ NAM
2. Law firm, Mgt Consulting: high x , high y , low θ, θ′ > 0
⇒ F14 > 0, F23 > 0, F12 large ⇒ PAM
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Sketch of Proof of PAM-Condition

Assume PAM allocation with resources on (x , µ(x), θ(x)). Must be optimal,
i.e., maximizes:

max
x,θ

f (x , µ(x), θ)− θw(x).

First order conditions:

fθ(x , µ(x), θ(x))− w(x) = 0

fx(x , µ (x) , θ(x))− θ(x)w ′(x) = 0

The Hessian is

Hess =

(
fθθ fxθ − w ′(x)

fxθ − w ′(x) fxx − θw ′′(x)

)
.

Second order condition requires |Hess| ≥ 0:

fθθ[fxx − θw ′′(x)]− (fxθ − w ′(x))2 ≥ 0

Differentiate FOC’s with respect to x , substitute:

−µ′(x)[fθθfxy − fyθfxθ + fyθfx/θ] ≥ 0

Positive sorting means µ′(x) > 0, requiring [ · ] < 0 and after rearranging:

F12F34 ≥ F23F14
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F12F34 > F23F14: Graphical

Budget Set: D = {(x , l)|lw(x) ≤ M}
Iso-output Curve: iy = {(x , l)|F (x , y , l , 1) = Π}

ll

D iyy

x

Slope of Iso-output Curve: ∂l
∂x = −F1(x ,y ,l ,1)

F3(x ,y ,l ,1) .

Fix F23 > 0 and consider better firm:

• If F12 ' 0, higher y has flatter slope (numerator is constant).

• If F12 � 0, then higher y will have steeper slope.
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Efficiency: Gains from “Re-sorting”

Assume F12F34 > F23F14 but negative sorting. Then improved output
after re-sorting.

low y high y

high x

low x
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Special Cases

Efficiency Units of Labor

• Skill “=” Quantity: F (x , y , l , r) = F̃ (y , xl , r) ⇒ F12F34 = F23F14

Multiplicative Separability

• F (x , y , l , r) = A(x , y)B(l , r) sorting if AA12
A1A2

BB12
B1B2

≥ 1

• If B is CES with elast. of substitution ε: AA12
A1A2

≥ ε (root-sm)

Becker’s one-on-one matching

• F (x , y ,min{l , r},min{r , l}) = F (x , y , 1, 1) min{l , r},
• Like inelastic CES (ε→ 0), so sorting if F12 ≥ 0

Sattinger’s span of control model

• F (x , y , l , r) = min
{

r
t(x,y)

, l
}

; write as CES between both arguments

• Our condition converges for inelastic case to log-supermod. in qualities

Extension of Lucas’ span of control model

• F (x , y , l , r) = yg(x , l/r)r , sorting only if good types work less well
together (−g1g22 ≥ −g2g12).

Spacial sorting in mono-centric city:

• F (x , y , l , r) = l(xg(y) + v(r/l)) ⇒ higher earners in center.
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Firm Size, Assignment, Wages

Proposition
Under assortative matching (symmetric distributions of x , y):

H(x) = hw
hf

PAM : θ′(x) =

H(x)

F23 − F14

F34
; µ′(x) =

1

θ(x)

H(x)

; w ′(x) =
F1

θ(x)
,

NAM : θ′(x) = −

H(x)

F23 + F14

F34
; µ′(x) =

−1

θ(x)

H(x)

; w ′(x) =
F1

θ(x)
,

Proof: µ′ from market clearing: Hw (x)− Hw (x) =
∫ y

µ(x)
θ(x̃)hf (x̃)dx

θ′ from FOC: fθ = w(x) and fx/θ = w ′, diff. and subst. µ′.

Corollary
Under assortative matching, better firms hire more workers if and only if
along the equilibrium path

H(x)

F23 > F14 under PAM, and

−H(x)

− F23 < F14 under NAM.
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Firm Size under PAM
F23 > F14

• Firm size increasing depends on relative strength of

1. F23: span of control
2. F14: resource intensity of labor

• If marginal impact of output from firm y ’ span of control is
larger than worker x ’s marginal impact of resources ⇒ high
productivity firms are larger

• Special case: Lucas 78
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General Capital, Monopolistic Competition

• General Capital:
• F (x , y , l , r) = maxk F̂ (x , y , l , r , k)− ik; Sorting cond. on max

• Monopolistic Competition in the Output Market:
• consumers have CES preferences with substitution ρ
• sales revenue of firm y : χF (x , y , l , 1)ρ

• Sorting condition[
ρF̃12 + (1− ρ)(F̃ )

∂2 ln F̃

∂x∂y

] [
ρF̃34 − (1− ρ)l F̃

∂2 ln F̃

∂l2

]
≥
[
ρF̃23 + (1− ρ)F̃

∂2 ln F̃

∂y∂l

] [
ρF̃14 + (1− ρ)

(
l F̃13 − l F̃

∂2 ln F̃

∂x∂r

)]
.

• independent of χ
• our condition under ρ = 1, log-sm when production linear in l .
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Wrap up on Large Firms

The model:

• Lay out a matching model with factor intensity

• Derive tractable sorting condition (F12F34 ≥ F14F23)

• Characterize equilibrium firm size, assignment and wages

• Search frictions: relation unemployment, skill and firm size

Economic Relevance & Applications in trade/macro/labor...:

• Mismatch debate: worker heterogeneity matters

• Comparative statics: impact of aggregate fluctuations

• Empirical: How does unemployment change across skills/firm size?
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II. Random Search and Sorting



Search Frictions

• Centralized trade has strong information requirement

• Even if observe all information, need coordination

• Introduce decentralized trade ⇒ search frictions

• True in all trade environments (even on stock exchanges –
market microstructure)

• Result in labor markets: unemployment

• Study unemployment as an equilibrium phenomenon



Search Frictions

• Information problem: cannot simply broadcast the information
and trade efficiently

• Sources of Frictions?
• Time to find (searching): dynamic
• Inspection, need time to ascertain quality: heterogeneity
• Coordination failure, all turn up at the same location: strategic
• Need to trade now, cannot wait for all in mechanism
• ...

• Focus on:
• Random search
• Directed search
• Market segregation

• How does it affect match formation and sorting? Wages?



Search Frictions
The Classical Models

• Sampling from a distribution of wages: McCall (partial
equilibrium); Rotschild

• Equilibrium unemployment: Mortensen-Pissarides

• On the job search: Burdett-Mortensen



Assortative Matching
With Search Frictions

(Loading movie.mp4)


marriagevideo01.mp4
Media File (video/mp4)



Search Frictions
No Transfers

• McNamara-Collins (93), Morgan (95), Burdett-Coles (97),
Eeckhout (99), Bloch-Ryder (00), Smith (06)

• x , y from disjoint sets [0, 1] (density of unmatched u(x)),
assume “cloning”; ρ arrival rate; symmetric problem

• f (x , y) utility (non-transferable!) to x given match with y .
With probability δ the match is dissolved

• v(x): x ’s expected value of being unmatched,
v(x |y) the analogous value from being matched with y .

• In an interval dt, a single’s Bellman equation is:

v(x) =
1

1 + rdt

[(
ρdt

∫

Ω(x)

u(y)dy

)
E[max{v(x |y), v(x)}|y ∈ Ω(x)]

+

(
1− ρdt

∫

Ω(x)

u(y)dy

)
v(x)

]

⇒ rv(x) = ρ

∫

Ω(x)
max{v(x |y)− v(x), 0}u(y)dy

• Similar
(r + δ)v(x |y) = f (x , y) + δv(x)



Search Frictions
No Transfers

• v(x |y) ≥ v(x) ⇐⇒ f (x , y) ≥ rv(x): accept all types y such
that y ≥ a(x), or A(x) = [0, a(x)]

⇒ Ω(x) = {y |x ≥ a(y)}
• Insert v(x |y) and the threshold a(x) into v(x):

rv(x) =

∫
[a(x),1]∩Ω(x) f (x , y)u(y)dy

ψ +
∫

[a(x),1]∩Ω(x) u(y)dy

where ψ = (r + δ)/ρ is a measure of the frictions in the model.

• An equilibrium: threshold function a and density u s.t. a(x) is
optimal for each x given u, and flow equation for every x :

δ (g(x)− u(x)) = ρu(x)

∫

[a(x),1]∩Ω(x)
u(y)dy .



Search Frictions
No Transfers

• Let us assume for now that Ω(x) = [0, b(x)] for all x , and
that b is an increasing function of x . Then:

rv(x) = max
a∈[0,1]

∫ b(x)
a f (x , y)u(y)dy

ψ +
∫ b(x)
a u(y)dy

,

• First-order condition (differentiating wrt a):

ψ =

∫ b(x)

a

(
f (x , y)

f (x , a)
− 1

)
u(y)dy .

• Fixed search cost, similar:

c =

∫ b(x)

a
(f (x , y)− f (x , a)) u(y)dy ,



Search Frictions
No Transfers

• Result: if f (x , y) multiplicatively separable, then a(x) = a

• Let f (x , y) = f1(x)f2(y). Then solution:

ψf1(x)f2(a)−
∫

Ω
[f1(x)f2(y)− f1(x)f2(a)] u(y)dy = 0

⇒ a is independent of x : class formation
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Search Frictions
No Transfers

• Characterization of equilibrium allocation: PAM/NAM

• Smith (2006): symmetric (or one-sided), f (x , y) = f (x , y)

• If f (x , y) log-supermodular, then PAM:

f (x2, y2)f (x1, y1) > f (x2, y1)f (x1, y2) for x2 > x1, y2 > y1

• With equality: class formation, weak PAM



PAM – Definition

• Acceptance set Ω s.t. if (x , y) are matched, then also (x , x)
and (y , y)

X

Y

(x, y)
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log-supermodularity ⇒ PAM
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Multiple Stationary Equilibria

• So far, population of singles was fixed: “clones”

• But, not realistic: different types match at different rates

• Matching rate is endogenous: depends on strategy of others

• Endogenous distribution of singles

⇒ multiple stationary equilibria (Burdett-Coles (1997))



Multiple Stationary Equilibria

• Burdett-Coles example, use their notation

• Model:
• 2 types: xH > xL > 0. Utility u = x .
• α : meeting probability;
• δ : probability of death;
• β : measure of m/w entering the market.
• Exogenous inflow from distribution Fw = Fm = F (x)

F (x) =





0, if x < xL
1− π, if xL ≤ x < xH
1, if x ≥ xH

• Let λ be the class size, and y is the reservation value (cf. φ)

• Let N(t): total # single agents N(t) = NH + NL

• Denote η(t) the % of singles of type H, then NH = ηN



Multiple Stationary Equilibria
I. Single Class Equilibirium

• H’s marry L’s

• The law of motion (where
.
N(t) is the time derivative):

.
N(t) = β − (α + δ)N(t)
.

NH(t) = βπ − (α + δ)NH(t)

with
.
η =

.
NH
.
N

; η =
NH

N

so that

.
η =

βπ − (α + δ)NH(t)

β − (α + δ)N(t)
=

β

N(t)
(π − η).

• In a steady state,
.
N(t) = 0 so that

β − (α + δ)N(t) = 0 ⇒ N(t) =
β

α + δ



Multiple Stationary Equilibria
I. Single Class Equilibirium

• Likewise for
.

NH(t) = 0

NH(t) =
βπ

α + δ

⇒ η = π

• H’s accept L’s ⇒ reservation type y(1) ≤ xL and class size is
λ1 = 1 and η = π

• We can write

y =
α

r + δ + α
(πxH + (1− π)xL) ≤ xL

⇒ α ≤ r + δ

π

xL
xH − xL



Multiple Stationary Equilibria
II. Elitist Equilibrium

• H’s only marry H’s

• Laws of motion
.
N(t) = β − (α

(
η2 + (1− η)2

)
+ δ)N(t)

.
NH(t) = βπ − (αη + δ)NH(t)

where η2 is the probability that 2 high types meet

• In a steady state implies
.
N(t) = 0 and

.
NH(t) = 0 or

N =
β

α
(
η2 + (1− η)2

)
+ δ

and NH =
βπ

αη + δ

• Since η = NH
N , it follows that

π =
η(αη + δ)

α
(
η2 + (1− η)2

)
+ δ



Multiple Stationary Equilibria
II. Elitist Equilibrium

• We show that λ1 = η(π) and λ2 = 1− η(π) can indeed be an
equilibrium. This requires that

y =
αη(π)xH

r + δ + αη(π)
> xL ⇒ α >

r + δ

η(π)

xL
xH − xL

⇒ Multiple equilibria iff

α ∈
[
r + δ

η(π)

xL
xH − xL

,
r + δ

π

xL
xH − xL

]

• Observe that:

1. η(π) > π : only if π < 0.5 : # singles of H type increases as
the the probability of match is lower

2. as xH − xL increases, the range for permissible α decreases.



Multiple Stationary Equilibria

• Multiplicity important for policy: Diamond (1982) provides
rationale for Keynesian demand management

• But, Diamond needs IRTS in the matching function M(u, v):
2× population ⇒ more than 2×# matches

• IRTS, obvious, like network externalities

• But there is evidence of CRTS: M(u, v) = v ·m
(
v
u , 1
)
; see

Petrongolo-Pissarides

• Here: generate multiplicity with CRTS, but based on selection



Search Frictions
Transfers

• Now: can transfer utility between matched partners (bribe
partner to accept!)

• Big implication: before there could be disagreement in
acceptance decision

• Now, transfers make everyone agree: if the surplus over
continuation is positive ⇒ match

• Transfers? Obvious in labor and goods market: there are
prices; marriage: money? roses? washing dishes? child care?...



Search Frictions
Transfers

• Shimer and Smith (2000): TU + Nash Bargaining: upon
meeting, value of match surplus is split

• Value function

(r + δ)V (x) = ρ

∫

Ω
[v(x |y)− v(x)] u(y)dy

where rv(x |y) = f (x , y) + κ [v(x)− v(x |y)], or equivalent ly

(r+κ) [v(x |y)− v(x) + v(y |x)− v(y)] = f (x , y)−rv(x)−rv(y)

• Total surplus s(x , y): output net of continuation values

• Form match if v(x |y)− v(x) + v(y |x)− v(y) ≥ 0.

• Nash bargaining

v(x |y)−v(x) = v(y |x)−v(y) =
1

2

1

δ + r
[f (x , y)− rv(x)− rv(y)]



Search Frictions
Transfers

• Substitute in Bellman equation:

rv(x) =
1

2

ρ

δ + r

∫

Ω(x)
max {f (x , y)− rv(x)− rv(y), 0} u(y)dy

• With ψ = (r + κ)/ρ is a measure of the frictions:

rv(x) =

∫
[a(x),1]∩Ω(x)[f (x , y)− rv(y)]u(y)dy

2ψ +
∫

[a(x),1]∩Ω(x) u(y)dy

• The first order condition for the optimal a implies

ψ =
1

2

∫ b(x)

a

(
f (x , y)− rv(y)

f (x , a)− rv(a)
− 1

)
u(y)dy .

• Observe:
1. no explicit solution for v(·)
2. existence: hairy fixed point problem from law of motion



Search Frictions
Transfers

• Shimer-Smith (2000). PAM if

fxy > 0, (log fx)xy > 0, (log fxy )xy > 0

• With additional assumption of monotonicity fx , fy > 0,
Eeckhout-Kircher (2010) show that these conditions imply

(log f )xy > 0

• Log-supermodularity ⇒ PAM

• Shimer and Smith: more general, existence proof (hard due to
endogeneity of distribution of singles)



Search Frictions
Constant search costs

• Morgan(95), Chade(01), Atakan(06), Eeckhout-Kircher(10)

• Before, search cost is opportunity cost of time (e.g. when
search is time consuming), proportional to value

• When search obtains swiftly, the appropriate measure of
search costs is money rather than time

• Value function (α = 0):

V = −c +

∫

A
u(x , ỹ)dFy (ỹ) +

∫

¬A
VdFy (ỹ)

or given acceptance if u(x , φ) = V

c =

∫

A
[u(x , ỹ)− u(x , φ)] dFy (ỹ)



Search Frictions
Constant search costs

• Now a sufficient condition for assortative matching is that
u(x , y) is supermodular

c =

∫

A
[u(x , ỹ)− u(x , φ)] dFy (ỹ)

compared to discounting

r

β
=

∫

A

[
u(x , ỹ)

u(x , φ)
− 1

]
dFy (ỹ)

• General search cost c(x): whenever c ′(x) > 0 need
stronger-than-supermodularity in order to obtain Assortative
Matching

• Reason: search cost ↑ for higher types ⇒ less “picky”



Taking Stock

• In order to obtain PAM:
• No frictions: Supermodularity
• Discounting: Log-supermodularity
• General cost: degree supermodularity proportional to c ′(x)

• Intuition: Opportunity cost is higher for higher types ⇒
choose faster acceptance (lower marginal type)

• Random Search = Dumb search?
• No information about types or prices: strong assumption!
• Endogenous market segmentation: Jacquet and Tan (JPE

2007), (with match makers: Bloch and Ryder 2000)
• Prices allocate resources: directed/competitive search
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Market Segmentation
Jacquet and Tan (2007)

• Class formation: why not set up a market place for each class

• Advantage: do not have to meet the lower types you reject
and higher types who reject you

• Disadvantage: none given constant returns to matching

• Now trade-off changes: can be more picky

• Induction: obtain perfect, frictionless matching allocation?



Market Segmentation
Form Subclasses
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Market Segmentation
Frictionless?
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Market Segmentation

• Induction: obtain perfect, frictionless matching allocation?

• No, when entry into the market is unrestricted

⇒ Public good component due to non-excludability

• High type cannot commit not to accept a match with a
slightly lower type

• Still class formation in equilibrium

• Optimal allocation: zero measure, continuum of markets
without mismatch



Identifying Sorting

How can we exploit variation due to search frictions (mismatch) to
infer information about the degree of complementarities?

1. Do more productive workers work in more prod. jobs?
• Positive exercise: learn about production / search process

2. Is sorting important? How big is it?
• Normative exercise: matters for policy (depends on complementarities)
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Identifying Sorting: sign and strength

• Constraint: use wage data only (most precise measure of job
productivity) and matched employer-employee data

• Objective a minimalist, stylized model (assignment model –
Becker (1973)) that allows us to show:

1. Identifying the sign (1.) is impossible
Reason: Workers get mainly paid by their marginal product

2. Identifying the strength (2.) is possible
Choices reveal how big complementarities/substitutes are.

3. Cannot be done with “standard” fixed-effect method

• Use of output/profit data possible, but mostly available at
firm level; per individual worker difficult
(Haltiwanger et al. (1999), van den Berg and van Vuuren (2003), Mendes, van den Berg, Lindeboom
(2007))

⇒ Need at least a theory of the firm
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The fixed Effects Regression

• Evidence from fixed effects regressions (Abowd, Kramarz, and
Margolis (1999), Abowd et al (2004),....):

logwit = aitβ + δi + ψj(i ,t) + εit

where:
• ait : time varying observables of workers
• δi : worker fixed effect
• ψj(i,t): fixed effect of firm (at which i works at t)

• εit : orthogonal residual

• Correlation of δi and ψj between matched pairs is taken as an
estimate of the degree of sorting

• Repeatedly established: zero or negative correlation ⇒ no
complementarities in the production technology?



Approach

• Characterize wages in the frictionless model

• Extend to search frictions ⇒ ∃ mismatch in equilibrium

• Derive analytically what we can learn from wage data

Relates to recent literature:

• Gautier, Teulings (2004, 2006)
• Second-order approximation to steady-state; assumes PAM

• Lopes de Melo (2008), Lise, Meghir, Robin (2008),
Bagger-Lentz (2008)
• Simulated search models with strong complementarities give

nonetheless small or negative fixed effect estimates

• Structural model of Abowd, Kramarz, Lengermann,
Perez-Duarte (2009):
• “test a simple version of Becker’s matching model”
• assume a split of output: βf (x , y)
• is inconsistent with Becker’s (1973) equilibrium wages



Findings

From wage data alone:

1. No identification of sign of sorting from wages:
• on frictionless equilibrium allocation
• off-equilibrium set
• economy with frictions (constant costs)

2. Fixed effects pick up neither sign nor strength

3. BUT we can identify strength
This is economically more meaningful than sign

4. Discussion: discounting, type-dependent search costs [some,
(small) identification], more general technologies...



The Model
Players and Production

• Worker type x , distributed according to Γ (uniform)

• Job type y , distributed according to Υ (uniform)

• Output f (x , y) ≥ 0

• Common rankings: fx > 0 and fy > 0

• Cross-partials either always positive (f ∈ F+ if fxy > 0) or
always negative (f ∈ F− if fxy < 0): monotone matching

• Examples of production functions we will use:

f +(x , y) = αxθyθ + h(x) + g(y),

f −(x , y) = αxθ(1− y)θ + h(x) + g(y),

where g(·) and h(·) are increasing functions.



The Frictionless Model
On the equilibrium path

• Assignment of workers to firms: µ(x) = y (worker x to firm y)

• Wage schedule: w(x)

• Profit schedule: π(y)

• Equilibrium: µ and payoffs such that ∀x , y :

w(x) + π(y) ≥ f (x , y)

w(x) + π(µ(x)) = f (x , µ(x))



The Frictionless Model
Becker’s Result

• Firm maximization:

max
x

f (x , y)− w(x)

• FOC:

fx(x , y)− ∂w(x)

∂x
= 0

• Let w?(x) be the equilibrium wage of worker x

w?(x) =

∫ x

0
fx(x̃ , µ(x̃))dx̃ + w0,

• Profits: π?(y) =
∫ y

0 fy (µ−1(ỹ), ỹ)dỹ − w0

• PAM if f supermodular (fxy > 0)⇒ µ(x) = x (from the SOC)

• NAM if f submodular (fxy < 0)⇒ µ(x) = 1− x
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The Frictionless Model
Cannot identify PAM/NAM

Proposition (1)

For any f + ∈ F+ that induces PAM there exists a f − ∈ F− that
induces NAM with identical equilibrium wages w?(x).

Proof.

w?,+(x) =

∫ x

0
f +
x (x̃ , x̃)dx̃ + w0

w?,−(x) =

∫ x

0
f −x (x̃ , 1− x̃)dx̃ + w0

Sufficient: f +
x (x̃ , x̃) = f −x (x̃ , 1− x̃).

Define: f −(x , y) = f +(x , 1− y) on [0, 1]2

Need: f− increasing in y . If f−y is bounded, add linear term. If not, g(y) increases faster than −f +(x, 1− y)



The Frictionless Model
Example with α = +/− 1, θ = 1

• Wages: w(x , µ(x)) = x2

2

• Derived from f + = xy + y and f − = x(1− y) + y

• But π?,+(y) = y2

2 + y

π?,−(y) = y + (1−y)2

2 , and π?,−(x) = 1− x + x2

2

10.750.50.250

2

1.5

1

0.5

0

x

f,w,pi

2

10.750.50.250

2

1.5

1

0.5

0

x

f,w,pi

1



The Frictionless Model
No Identification of PAM/NAM

• Based on wage data alone, we cannot “know” which are the
good jobs (higher ranked y)

• The good worker matches with the most attractive firm

• Under NAM, the bad firm is more attractive because it pays
higher wages



The Frictionless Model
Off the Equilibrium Allocation

Off-equilibrium wages between x and y (not matched):

(”Trembles” to such wages yield independent variation).

• Equilibrium requires w(x , y) ∈W (x , y):

f (x , y)− w(x , y) ≤ π(µ(x), y)

w(x , y) ≤ w(x , µ(x))

• Examples: Bargaining split, firms or worker optimal wage

Proposition (2)
For any f + ∈ F+ with PAM there exists f − ∈ F− with NAM and
identical set of equilibrium wages W+(x , y) = W−(x , 1− y).
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Mismatch due to Search Frictions

Two Stage Search Process:

1. First, costless random meeting stage
• one round of pairwise random meetings
• if match is formed: wage as split of surplus over waiting

2. Second, if not matched: costly competitive matching
• pay search cost c each
• get matched according to the competitive assignment
• production at end

• For simplicity assume symmetry

• fxy (x , y) = fxy (y , x) for f ∈ F+

• fxy (x , y) = fxy (1− y , 1− x) for f ∈ F−

• Second stage payoffs: w(x , µ(x))− c and π(µ−1(y), y)− c

• First stage: Match provided

f (x , y)− (w?(x) + π?(y)− 2c) ≥ 0
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Mismatch due to Search Frictions
The Example: θ = 1

x

y

2
√
c

10

1



Mismatch due to Search Frictions
Wages

w(x , y) =
1

2

[
f (x , y)− w(x , µ)− π(µ−1, y) + 2c

]
+ w(x , µ)− c

=
1

2

[
f (x , y) + w(x , µ(x))− π(µ−1(y), y)

]



Mismatch due to Search Frictions

Proposition (3)

For any f ∈ F+ that induces PAM there exists a f ∈ F− that
induces NAM with identical equilibrium wages w?(x).

• From wages alone we cannot identify the sign of fxy

• Here: we aim to identify the strength of fxy (i.e. |fxy |)



Mismatch due to Search Frictions

Lemma: (Bliss Point) Wages w(x , y) are non-monotone in y .

• Example. Mediocre lawyer in top firm: paid less than in
mediocre firm. Top firm must forego higher future profit

• Obvious in model of competition (Becker), also in infinite
horizon search models (see Gautier and Teulings (2006))



Mismatch due to Search Frictions
Inconclusive Firm Fixed Effect

Decompose wage process:

w(x , y) = δ(x) + ψ(y) + εxy , (1)

Unbiased δ and ψ (integrate over y and x, respectively)

δ(x) =

∫

B(x)
[w(x , y)− ψ(y)] dΥ(y |x), (2)

ψ(y) =

∫

A(y)
[w(x , y)− δ(x)] dΓ(x |y), (3)

Firm fixed effect δ is constant if Ψ is constant:

ψ(y) =

∫

A(y)

[w(x , y)− wav (x)] dΓ(x |y)

︸ ︷︷ ︸
=:Ψ(y)

+

∫

A(y)

∫

B(x)

ψ(ỹ)dΥ(ỹ |x)dΓ(x |y)

(4)



Inconclusive Firm Fixed Effect

Proposition (4)
The firm fixed effect is ambiguous. It is zero under uniform distributions
and f (x , y) = αxy + h(x) + g(y).

• The firm effect Ψ is

Ψ(y) =

∫ y+K

y−K
[w(x , y)− wav (x)] dΓ(x |y)

• Assuming a long panel: wav (x) =
∫ x+K

x−K w(x , y)dΥ(y |x)

• Show that Ψ′ ≷ 0

Ψ′(y) =

∫ y+K

y−K

∂w(x , y)

∂y
γ(x |y)dx

+ (w(y + K , y)− wav (y + K)) γ(y + K |y)

− (w(y − K , y)− wav (y − K)) γ(y − K |y)

• First effect: change in matched type (Beckerian effect)

• Second effect: change in set of matched partners

• Both effects: ambiguous, often opposite sign, zero under uniform



Identifying the Strength of Sorting
Without Knowing the Sign

Proposition (5)

We can identify strength of sorting, i.e., cross-partial |fxy |.

Two parts:

1. Use wage gap to identify the cost of search c

2. Use range of matched types to identify |fxy |

1. Wage Gap

• Maximum wage in panel: identify type (optimal = max):

wk = max
t∈{1,...,T}

w t
k

• ΩW (w): distribution of maximum wages ( ΩF (w) for firms)

• Identify search by wage gap(where w x = mint∈{1,...,T} w
t
x ):

c = w x − w x ,



Identifying the Strength of Sorting
Without Knowing the Sign

2. Range of Matched Types

• Search loss L(x , y) due to mismatch:

L(x , y) = f (x , y)−
∫ x

0
fx(x̃ , µ(x̃))dx̃ −

∫ y

0
fy (µ−1(ỹ), ỹ)dỹ

= −
∫ x

µ−1(y)

∫ x

µ−1(ỹ)
|fxy (x̃ , ỹ)|dx̃dỹ

= −
∫ x

y

∫ x

ỹ
|fxy (x̃ , ỹ)|dx̃dỹ (for PAM)

• Search decision: L(x , y(x)) = −2c .

• This functional equation identifies |fxy |: compares variation in
matching sets (x − y(x)) to variation in wage (2c)

• If wage variation high, matching sets small ⇒ large loss from
mismatch, i.e. the cross-partial large



Identifying the Strength of Sorting
Without Knowing the Sign

• More structure (example): constant cross-partial α, then

−L(x , y) = |α|(xθ − y(x)θ)2 = 4c

⇔ x =
(

2 (c/|α|)1/2 − y(x)θ
)1/θ

use data on observed pairs x , y to estimate α, θ

• Total loss from search (mismatch minus perfect matching):

G =

∫ 1

0

∫ 1

0
L(x , y)dxdy = −|α| θ2

(2θ + 1)(θ + 1)2
.
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Type-Dependent Search Costs
Discounting – Shimer-Smith (2000)

Result: Non-monotone wages also under discounting

• Discount factor β. Technology f +(x , y) = xy

• 1st period wages (surplus matching (split) + value waiting):

w+(x , y) =
1

2

[
xy − β x

2

2
− β y

2

2

]
+

1

2
β
x2

2

=
1

2
xy + β

x2

4
− β y

2

4

• Match if surplus is positive. [Matching set A(y) =
[
Ky,Ky

]
, K = β−1 ±

√
β−2 − 1.]

• Under NAM technology, f −(x , y) = −xy + y

w−(x , y) =
1

2
xỹ + β

x2

4
− β ỹ

2

4
+

1

2
(1− β)(1− ỹ)

• w+ ≈ w− small when β ≈ 1 : some, but small sign ident.

• Wage is also inverted U-shaped



Mismatch due to Search Frictions
Non-monotone Wages under Discounting



Non-monotonicities arise generally
General Type-Dependent Search Costs

Non-monotonicities with general search costs:

f (x , y)− (w?(x) + π?(y)− c(x)− c(y)) ≥ 0.

Discounting: c(y) = (1− β)π?(x)
Differing arrival rates: c(y) = (1− α(y)β)π?(x)

Wages are non-monotonic (whenever c ′(y) ≤ y):

w(x , y) =
1

2
xy +

1

4
x2 − 1

4
y2 − 1

2
c(x) +

1

2
c(y)

⇒ ∂w/∂y =
1

2
x − 1

2
y + c ′(y)

• Non-monotonicities arise always when higher types reject some
lower types (because then workers obtain their continuation value at
the highest and lowest type willing to match)

• Even with OJS (fixed entry cost, then type realized): No
opportunity cost for worker, but usually the firm cannot search while
matched, and some matches are not formed.



Further Identification
Local Complementarity

• Given wage equation (where γ is general bargaining share):

w(x , y) = γ
[
f (x , y)− w(x , µ)− π(µ−1, y) + 2c

]
+w(x , µ)−c

⇒
wxy (x , y) = γfxy (x , y)

• Any (x , y), (x ′, y ′) with x 6= x ′ and y 6= y ′ ⇒ cross-partial is

w(x ′, y ′)− w(x , y ′)− (w(x ′, y)− w(x , y))

γ[x ′ − x ][y ′ − y ]



Further Identification
Local Complementarity

• Frictionless model: optimal y = µ(x) s.t. wy (x , µ(x)) = 0

• Concavity conveys information:

wyy (x , µ(x)) = −wxy (x , µ(x))

µ′(x)

• Even with search frictions (provided costs are constant):

wyy (x , x) = wxy (x , x) = γfxy (x , x),

• Can capture complementarities locally provided search costs
are constant and the cross-partial is constant

• Gautier-Teulings use a second order approximation with
quadratic technologies

• Does not work with varying costs:

wyy (x , x) = γ
[
fxy (x , x) + k ′′(x)

]



Infinite Horizon

• Assume symmetry and equal splits; stationary distribution of
unmatched G (·)

• Output f (x , y); payoff is −c if no match

• v(x), v(y) the (identical) value functions of a type x and y :

v(x) =

∫

M(x)
w(x , y)dG (y) +

∫

y /∈M(x)
dG (y)[v(x)− c]

• Surplus of a match: s(x , y) = f (x , y)− [v(x) + v(y)− 2c] .

• Marginal type y : f (x , y(x))− v(x)− v(y(x)) = −2c .

• Wage:

w(x , y) =
s(x , y)

2
+ v(x)− c

=
1

2
[f (x , y)− v(x)− v(y) + 2c] + v(x)− c .



Infinite Horizon

• Again: non-monotonic wage schedule (both at high and at
low marginal type, s(x , y) = 0) and w = v(x)− c

• Sign of cross-partial not identified

• Recover cost of search? Let w(x) = v(x)− c be lowest wage
and Ew(x) be the average wage, then from value function

v(x) = πEw(x) + (1− π)w(x)

where π = Prob{M}
• Then

c = [Ew(x)− w ]π.



Wrap Up

• We cannot identify the sign of sorting from wage data

• We can identify the strength: economically relevant

• Standard fixed effects get neither sign nor strength

• Discussion

1. Identifying sign: attributing profit or output data

2. More general technologies: horizontal vs vertical diff

3. Different reasons for mismatch (e.g. productivity shocks)

4. Type-Dependent Search Costs (e.g. discounting)

5. On-the-job Search



Identification Questions

• Identification not based on prices?

• In marriage markets: identifying preferences (Chiappori,...)

• Production characteristics?
• Direct measures of output; team production
• Football teams: can observe output measures (but estimation

is complicated since output is a function of rival)
• Can we measure the impact of substituting one player for

another?
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III. Directed Search



Motivation

• Role of search frictions in the classic assignment problem when
there is price competition. Complementarities are common in:

• labor market, housing market, business partnerships, product
markets,...

• Frictionless matching markets: Koopmans & Beckmann (’57),
Shapley & Shubik (’71),Becker (’73)

• price for each type combination: p(x , y)
• perfect trade. concern: important trade imperfections

• Our approach: decentralized price competition

• trading probability per price-type combination: λ(x , y , p)
• higher λ: higher trade prob. for sellers but lower for buyers
• price competition, absent centralized market clearing

• Shimer and Smith (2000) [Atakan 2006]: random search

• no information about prices and types, imperfect trade
• Concern: No information is a strong assumption
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Motivation

• We uncover a natural economic explanation for the forces that
govern the matching patterns (when good types match with good types?)

• New conditions for positive / negative sorting:
root-supermodularity

• Economic Forces:
Complementarities in Match-Value vs Search Technology



Motivation

• Two key aspects to matching:

(1) The quality of the match (”match value motive”):

+AM only for strong complementarity

: root-supermodularity
(generalized: 1/(1− a) - root-supermodularity, where a is el. of subst. in matching)

(2) The probability (speed) of trade (”trading-security”):

–AM even with some supermodularity: nowhere root-sm

complementarities

ES−1
f

︸ ︷︷ ︸
(1) Becker (1973)

− frictions

ESM

︸ ︷︷ ︸
(2) bad types facilitate trade (insurance)

> 0
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Root vs Log-supermodularity
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Root vs Log-supermodularity
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The Model

• Players
• Measure S(ȳ) sellers: observable types y ∈ [y , ȳ ] dist S(y)
• Measure 1 buyers: private type x ∈ [x , x̄ ] i.i.d. from B(x)
• Unit demands and supplies

• Payoffs of trade between (x , y) at price p:
• Buyer: utility f (x , y)− p
• Seller: profit p
• No trade: payoffs normalized to zero



The Model
The extensive form

2 stage extensive form:

1. Sellers post prices: G (y , p) seller distribution of (y , p)

2. Buyers observe G and choose y , p (or ∅)
• H(x , y , p) buyer distribution over (x , y , p).

• If buyer meets such a seller, he gets the good and pays p

Matching Technology:

• Primitive: total number of matches M(b, s) (CRTS)

• Let λ = b/s be buyer-seller ratio (depends on (y , p))

• Matching probability m(λ) = M(b, s)/s

Seller: m(λ); Buyer: q(λ) = m(λ)/λ

• m′ > 0, q′ < 0 , m, q ∈ [0, 1], m′′ < 0 (with decr. elasticity)



The Model
Matching Function

λ

m(λ)

1



The Model
Matching Function

Different interpretations of m(λ(y , p))

1. anonymous (symmetric) strategies (buyer miscoordination)

2. spacial separation (Acemoglu 1997)

3. market makers providing trading platforms (Moen 1997)

Examples of Matching Function

1. anonymous strategies [urn-ball]: m1(λ) = 1− e−λ

2. fraction 1− β buyers get lost: m2(λ) = 1− e−βλ

3. random on island [telegraph-line]: m3(λ) = λ/(1 + λ)

Number of matches: M(b, s) = sM(bs , 1) = sm(λ)
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Payoffs and Optimal Decisions given G and H

Queue length λGH(y , p) = dHXY/dG on equilibrium path

1. Seller payoffs: π(y , p,G ,H) = m(λGH(y , p))p

2. Buyer payoffs: u(x , y , p,G ,H) = q(λGH(y , p)) [f (x , y)− p]

Complete queue length (Subgame Perfection ”off-equilibrium-path”, Acemoglu and Shimer (1999b))

λGH(y , p) = sup

{
λ ∈ R+ : ∃x ; q(λ) [f (x , y)− P] ≥ max

(y′,p′)∈suppG
u(x , y ′,P ′,G ,H)

}

Definition
An equilibrium is a pair of trading distributions (G ,H) such that:

(i) Seller Optimality: (y , p) ∈ suppG only if p maximizes 1. for y ;

(ii) Buyer Optimality: (x , y , p) ∈ suppH only if (y , p) maximizes 2. for x .



Payoffs and Optimal Decisions given G and H

Queue length λGH(y , p) = dHXY/dG on equilibrium path

1. Seller payoffs: π(y , p,G ,H) = m(λGH(y , p))p

2. Buyer payoffs: u(x , y , p,G ,H) = q(λGH(y , p)) [f (x , y)− p]

Complete queue length (Subgame Perfection ”off-equilibrium-path”, Acemoglu and Shimer (1999b))

λGH(y , p) = sup

{
λ ∈ R+ : ∃x ; q(λ) [f (x , y)− P] ≥ max

(y′,p′)∈suppG
u(x , y ′,P ′,G ,H)

}

Definition
An equilibrium is a pair of trading distributions (G ,H) such that:

(i) Seller Optimality: (y , p) ∈ suppG only if p maximizes 1. for y ;

(ii) Buyer Optimality: (x , y , p) ∈ suppH only if (y , p) maximizes 2. for x .



Payoffs and Optimal Decisions given G and H

Queue length λGH(y , p) = dHXY/dG on equilibrium path

1. Seller payoffs: π(y , p,G ,H) = m(λGH(y , p))p

2. Buyer payoffs: u(x , y , p,G ,H) = q(λGH(y , p)) [f (x , y)− p]

Complete queue length (Subgame Perfection ”off-equilibrium-path”, Acemoglu and Shimer (1999b))

λGH(y , p) = sup

{
λ ∈ R+ : ∃x ; q(λ) [f (x , y)− P] ≥ max

(y′,p′)∈suppG
u(x , y ′,P ′,G ,H)

}

Definition
An equilibrium is a pair of trading distributions (G ,H) such that:

(i) Seller Optimality: (y , p) ∈ suppG only if p maximizes 1. for y ;

(ii) Buyer Optimality: (x , y , p) ∈ suppH only if (y , p) maximizes 2. for x .



Assortative Matching
Assignment Function

Definition
Assortative: ∃ monotone function ν such that points (x , ν(x)) have full
measure under HXY .

• ν(x) is the seller type with whom x wants to trade

• µ(y) is the buyer type that wants to trade with seller y (µ = ν−1)

• positive assortative (PAM, +AM): µ strictly increasing

• negative assortative (NAM, -AM): µ strictly decreasing



Assortative Matching
Assignment Function

Definition
Assortative: ∃ monotone function ν such that points (x , ν(x)) have full
measure under HXY .

• ν(x) is the seller type with whom x wants to trade

• µ(y) is the buyer type that wants to trade with seller y (µ = ν−1)

• positive assortative (PAM, +AM): µ strictly increasing

• negative assortative (NAM, -AM): µ strictly decreasing



Assortative Matching
Main Insights

• n-root-supermod needed to overcome NAM
(n = 1

α ; n ≥ 1, a ∈ [0, 1])

• n equals elasticity of substitution in matching

• n results simple (efficiency) trade-off
• complementarities in production
• complementarities in search technology



Illustration of -AM
Private Values

1. .

Shut down :

The quality of the match.

2. . The probability (speed) of trade.

• Total valuation: f (x , y) = x + y
(e.g. opportunity cost to seller: y = −c)

• Frictionless: optimal assignment is indeterminate
(no ”match value motive”)

• Frictions: Equilibrium is –AM

• High value buyer pays high p to avoid no-sale
(”trading-security motive”)

• Low type seller is more interested in price than prob.
(so low seller types provide trading security for buyers)
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Illustration of -AM
Private Values

• With private values: single crossing
• Buyers’ indifference curves in 2-dimensional plane

λ

p

x1
x2 > x1



Illustration of -AM
Private Values

• With private values: single crossing
• Sellers’ isoprofit curves in 2-dimensional plane

λ
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y2 > y1
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Illustration of -AM
Private Values

• With private values: single crossing
• –AM: High y2 matches with low x1

λ

p

x1
x2 > x1

y2 > y1

y1



Assortative Matching
Main Theorems

∃ numbers n̄ and n larger than one (n = 1/(1−max{eM}))

Theorem (+AM under n̄-Root-Supermodularity)

+AM for all type distr. iff f (x , y) is n̄- root-supermodular.
-AM for all type distr. iff f (x , y) is nowhere n-root-supermod.

Corollary: -AM for all distr. if f (x , y) is weakly submod.

Theorem (Efficiency)

The assortative assignment is constrained efficient.

Proposition: q−1 convex and bounds on derivatives:
+AM for all distr. iff f (x , y) is square-root-supermodular.

Proposition: If matching function is not CES
+AM for some distr. even if f (x , y) not n̄-root-supermod.

Proposition: If matching function is not CES
-AM for some distr. even if f (x , y) is n-root-supermod.
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Positive Assortative Matching
Proof: +AM iff f (x , y) n̄-root-supermodular

Seller y : maxp∈ Pm(λ(p, y))p

Recall:

λGH(y , p) = sup {λ ∈ R+ : ∃x ; q(λ) [f (x , y)− P] ≥ U(x ,G ,H)} ,

where U(x ,G ,H) ≡ max(y ′,p′)∈suppG u(x , y ′, p′,G ,H).

⇒ max
λ,p

{
m(λ)p : λ = sup

{
λ′ : ∃x ; q(λ′) [f (x , y)− p] ≥ U(x ,G ,H)

}}

⇒ max
x ,λ,p
{m(λ)p : q(λ) [f (x , y)− p] = U(x ,G ,H)} .

(connection to competing mechanism design; McAfee 1993, Peters 1997, 1999)



Positive Assortative Matching
Proof: +AM iff f (x , y) n̄-root-supermodular

After substituting the constraint:

max
x∈X ,λ≥0

m(λ)f (x , y)− λU(x).

First Order Conditions:

m′(λ)f (x , y)− U(x) = 0 (similar to Hosios ’90)

m(λ)fx(x , y)− λU ′(x) = 0 (similar to Becker ’73)

Hessian for SOC:(
m′′(λ)f (µ, y) m′(λ)fx(µ, y)− U ′(x)

m′(λ)fx(µ, y)− U ′(x) m(λ)fxx(µ, y)− λU ′′(x)

)
.

Along Equilibrium Allocation:

Question: a(λ)? Magnitude?

µ′(y)


fxy −

1− λm′(λ)/m(λ)

−λm′′(λ)/m′(λ)︸ ︷︷ ︸
a(λ)

fx(µ, y)fy (µ, y)

f (µ, y)


 ≥ 0,
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Intuition and Explanation

What is a(λ)?

• It is the elasticity of substitution ESM between buyers and sellers in
the matching function M(b, s) = sm(b/s).

a(λ) =
Mb(λ, 1)Ms(λ, 1)

Mbs(λ, 1)M(λ, 1)

Why is it important?

• The Hosios condition: entry of sellers into one (x , y) based on
derivative of matches with respect to sellers (Ms).

• Our condition connects different (x , y) combinations via the
elasticity of substitution between buyers and sellers (ESM).

Interpretation in terms of ”match value” and ”trading security”:

fxy f

fx fy︸ ︷︷ ︸
match value improvement

(CRTS : ES−1
f

)

>
Mb Ms

Mbs M︸ ︷︷ ︸
loss due to no trade

(ESM )

⇔ fxy f

fx fy

MbsM

MbMs
> 1
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Positive Assortative Matching
Sufficiency and Necessity

ā = sup a(λ), a = inf a(λ). Recall:

µ′(y)


fxy −

1− λm′(λ)/m(λ)

−λm′′(λ)/m′(λ)︸ ︷︷ ︸
a(λ)

fx(x , µ)fy (x , µ)

f (x , µ)


 ≥ 0, (5)

Proposition: PAM ∀ B,S ⇐ f is strictly n-root-sm (n = (1− ā)−1).
Proposition: NAM ∀ B,S ⇐ f is nowhere n-root-sm (n = (1− a)−1).
(includes weak submodularity, sometimes more)

Proof: Non-differential version of (5).

Proposition: PAM ∀ B,S ⇒ f is n-root-sm (n = (1− ā)−1).
Proposition: NAM ∀ B,S ⇒ f never str. n-root-sm (n = (1− a)−1).

Proof: By contradiction: find distributions where (5) cannot hold.



Special Case 1
Square-Root-Supermodularity

Assume q−1 convex; bounds on derivatives (|q′(0)|, |q′′(0)| ∈ (0,∞)).

Proposition: +AM ∀ B,S ⇔ f is square -root-sm.

• a(0) = 1/2 (binding when some sellers cannot trade)

• a(λ) ≤ 1/2 (if and only if 1/q(λ) is convex in λ)

• therefore ā = 1/2.

First Bullet Point:
q(λ) = m(λ)/λ

⇒ q′(λ) = (m′(λ)− q(λ))/λ bounded ⇒ m′(0) = q(0)

⇒ q′′(λ) = (m′′ − 2q′)/λ bounded ⇒ q′(0) = m′′(0)/2

⇒ a(0) = m′(0)q′(0)/[m′′(0)q(0)] = 1/2



Special Case 2
The Class of CES Matching Functions

Consider CES: m(λ) = (1 + kλ−r )−1/r [M(β, σ) = (βr + kσr )−1/rβσ]
r > 0, k > 1, a(λ) = (1 + r)−1 constant

Proposition: Fix the type distributions. There is

• +AM if f is n-root-supermodular; (n = 1+r
r )

• −AM if f is nowhere n-root-supermodular; (n = 1+r
r )

Corollary: CES with elasticity e, then PAM under:

1. Supermodularity if e = 0 (Leontief);

2. Square-Root-Supermodularity if e = 1
2 (Telegraph Line);

3. Log-Supermodularity if e = 1 (Cobb-Douglas).



Assortative Matching
Graphical Interpretation

• IC in (λ, p, y), project in (λ, p) and vary y

λ

p

(λ′, p′)

(λ∗, p∗)

x1

y1

x2 > x1



Assortative Matching
Graphical Interpretation

• Parallel shifts, identical distance when f = x + y

λ

p

(λ′, p′)

(λ∗, p∗)

x1

y2 > y1y1y1

x2 > x1

x1

x2 > x1



Assortative Matching
Graphical Interpretation

• Slope of iso-profit curve is flatter
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Assortative Matching
Graphical Interpretation

• High y2 will match with low x1

λ

p

(λ′, p′)

(λ∗, p∗)

x1

y2 > y1y1y1

x2 > x1

x1

x2 > x1



Assortative Matching
Graphical Interpretation

• High x IC moves less when submodularity

λ

p

(λ′, p′)

(λ∗, p∗)

x1

y2 > y1y1y1

x2 > x1

x1

x2 > x1



Assortative Matching
Graphical Interpretation

• Need root-supermodularity for IC to move ”far enough”

λ

p

(λ′, p′)

(λ∗, p∗)

x1

y2 > y1y1y1

x2 > x1

x1
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Assortative Matching
Comparing Logs and Roots

Competition
supermodularity
⇒ +AM
submodularity
⇒ –AM

Dec. Price
Comp
root-supermodularity
⇒ +AM
sub- and modularity
⇒ –AM

Random Search
log-supermodularity
⇒ +AM
log-submodularity
⇒ –AM

0 fxy

+AM
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Existence

Proposition
If f (x , y) is n̄-root-supermodular (or nowhere n-rs), then there
exists an equilibrium for all type distributions.

Proof.

• construct equilibrium, monotonically increasing (+AM)

• solution to FOCs satisfies system of 2 differential equations in
λ and µ with the appropriate boundary conditions

• verify SOCs along equilibrium allocation µ∗

• establish this is a global maximum by considering different
solutions to the FOCs and showing that none other exist



Efficiency
+AM constrained efficient under root-supermodularity

Planner chooses (G ,H) to maximize total surplus

max
G ,H

∫
m(λGH(y , p))f (x , y)dG

s.t. HX = B; GY = S ; λGH = dHXY/dG

Under our root-supermodularity conditions for PAM and NAM:

• solution coincides with decentralized equilibrium

• Hosios per (x,y) market, Root-SM to connect them



Prices

The equilibrium price schedule under PAM satisfies

p′(y) = fy︸︷︷︸
Becker(1973)

+ (ηqfx − ληmfy ) a(λ)︸ ︷︷ ︸
Compensation through trading probabilities

ηm elasticity of m

Insights:

1. Prices increasing in quality under PAM

2. Prices as in Becker under symmetry

3. Prices can be decreasing under NAM



Dynamic Framework

Dynamic Framework:

max
λ∈R+

m(λ) [1− δ (1−m(λ))]−1 p

s.t. q(λ) [1− δ (1− q(λ))]−1 (f (x , y)− p) = U(x)

Necessary and sufficient condition for +AM:

fxy (x , y) ≥ A(λ, δ)a(λ)
fx(x , y)fy (x , y)

f (x , y)

where

1. A(λ, δ) ∈ [0, 1]

2. limλ→0 A(λ, δ) = 1 for all δ ∈ [0, 1),

3. limδ→1 A(λ, δ) = 0 for all λ > 0.



Vanishing Frictions

• Two approaches to vanishing frictions:

1. over time δ → 1; or 2. change in matching function
• root-supermodularity necessary for +AM for any frictions
• but necessary only at vanishing set of types

• Illustration: changing matching function

m(λ; δn)

λ1

1

m(λ)

δn → 1



Wrap Up

• Complementarities are a source of high productivity in many
environments (goods, labor, neighborhood,...)

• Imperfections in trade, but prices play allocative role

• Role of prices: ex-ante sorting, reduces frictions

• Highlights the interplay between frictions and match value:

1. Match Value: tendency for +AM (if supermodular)

2. Frictions: tendency for –AM (a-modular⇒ –AM)

• simple trade-off: Becker vs Elasticity in Matching

• root-supermodular: point where effect (1) outweighs (2)
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III. Directed Search

Large Firms



Large Firms: Directed Search and Sorting

• Existing literature on search and firm size: identical workers
(Smith 99, Acemoglu-Hawkins 06, Mortensen 09, Kaas-Kircher 10, Helpman-Itskhoki-Redding 10,
Menzio-Moen 10,...).

• Vacancy filling prob m(q). Job finding prob m(q)/q. Post (x , vx , ωx)

max
rx ,lx ,ωx ,vx

∫
[F (x , y , lx , rx)− lxωx − vxc] dx

s.t. lx = vxm(qx); and ωxm(qx)/qx = w(x).

• Two equivalent formulations:

1. maxsx ,rx
∫

[G (x , y , sx , rx)− w(x)sx ]dx , where

G (x , y , sx , rx) = maxvx [F (x , y , vxm(sx/vx), rx)− vxc].

2. maxrx ,lx ,vx
∫

[F (x , y , lx , rx)− C (x , lx)]dx , where

C (x , lx) = minvx ,qx cvx + qxvxw(x) s.t. lx = vxm(qx).

• Check sorting, compute w(x) as in previous part.

• Determine unemployment. FOC

(simple closed form with const. elasticity α)

w(x)qx =
η(q)

1− η(q)
c

=
1− α
α

c
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Large Firms: Directed Search and Sorting

Proposition
The unemployment rate is falling in worker skills.

• η(q) weakly decreasing ⇒ q decreasing in x

Proposition
The vacancy rate is ambiguous in firm size.

• Consider PAM (likewise for NAM)

• Vacancies (1/q) increasing in x

• Firm size ambiguous in y : F23 ≷ F14
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III. Directed Search

Risk Aversion – Distribution of Assets



Question

The broad purpose of this paper:

• How does the distribution of assets affect job search
decisions?

1. Do workers with different assets get different productivity jobs?

2. What is optimal level of government-provided unemployment
insurance (UI) as a function of asset ?
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Motivation
Model Ingredients

• Unemployment risk as source of income uncertainty

• Two sources of market incompleteness:

1. Uninsurable Unemployment Risk
2. Job search

• Heterogeneous asset holdings

• Access to asset markets ⇒ consumption smoothing

→ role of precautionary savings

• How UI affects LM outcome?
• Incentive effects: which jobs to apply for

• The needs to smooth consumption and job search behavior



The Mechanism
The Labor Market as an Insurance Mechanism

• Heterogeneous firms: high productivity firms
• have higher opportunity cost of unfilled job
• Post high wages

• Risk averse workers self-insure w/ wage-unemployment bundle

• Capture precautionary savings motive

• Different asset holdings affect job search decision

• Private assets: differential risk tolerance ⇒ truth telling



Related Literature

• Partial Equilibrium
• Danforth (1979)
• Hopenhayn-Nicolini (1992): optimal UI, consumption ↓
• Shimer-Werning (2007, 2008): UI ↑ (constant if CARA)

• General Equilibrium
• Acemoglu-Shimer (1999): homogeneous assets; CARA; focus

on firm investment and job creation
• Golosov-Menzio-Maziero (2011): homogenous agents, private

job search decision

• Quantitative
• Hansen-Imrohoroglu (1992)
• Alvarez-Veracierto (2001)
• Krusell, Mukoyama, Sahin (2011)

⇒ New:

1. asset distribution + two-sided heterogeneity ⇒ sorting
2. both consumption-saving decision and choice job finding prob
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The Model

• Timing:
• Two periods (generalize to infinite horizon)

• Agents:
• Workers a ∈ A = [a, a] ⊂ R+, distributed ∼ F (a)
• Firms y ∈ Y =

[
y , y
]
⊂ R+, distributed ∼ G (y) (large)

• Preferences and Technology:
• Concave worker pref.: u(c), where u is C 2.
• Output: v(y). Firm risk neutral.
• Common Discount factor β < 1. Risk Free bond R > 1

• Matching Technology:
• Search is Directed
• Worker-to-firm ratio: λ
• Matching prob: m(λ);m′ > 0,m′′ < 0; worker q(λ) = m(λ)

λ



The Model
Actions

• Firm y : announce w ⇒ distribution of firm strategies P(y ,w)

• Worker a (assume for now observable):
• consumption-savings decision a′:

1. period 1: c1 = a− a′

2. period 2: c2,e = Ra′ + w , c2,u = Ra′

• jobs search decision: firm y , and therefore w , q(λ)
⇒ distribution of worker strategies Q(a, a′, y ,w)

• Measure Preserving market clearing condition:

PY(·) = G (·) and QA = F (·)



The Model
Payoffs

• Firm sets wages to maximize expected profits:

π(y ,w) = m(λ) (v(y)− w)

• Worker simultaneously chooses consumption and makes
job-search decision to maximize expected payoff:

U(a, a′, y ,w) = u(c1) + β [q(λ)u(c2,e) + (1− q(λ))u(c2,u)]

s.t. c1 = a− a′

c2,e = Ra′ + w

c2,u = Ra′

• Beliefs

λPQ(a,w) = sup

{
λ ∈ R+ : ∃a, q(λ)[y − w ≥ max

y ,w∈suppP
U(a, a′, y ,w ;P,Q)]

}
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The Model
Equilibrium

Definition
An equilibrium is a pair of market clearing distributions (P,Q)
such that:

1. Worker optimality: (a, a′, y ,w) ∈ supp Q only if (y , p)
maximizes U(a, a′, y ,w);

2. Firm optimality: (y ,w) ∈ supp P only if w maximizes π;

• Monotone matching (positive) µ : A → Y. Market Clearing:

∫ a

a
f (a)da =

∫ y

µ(a)
λ(y)g(y)dy .



Solution

• First solve as if a observable

• Wages from expected profits: w = v(y)− π
m

• Rewrite worker maximization problem (denoted by Φ(a, y , π)):

max
a′,λ

u(a− a′) + β
[
qu
(
Ra′ + v(y)− π

m

)
+ (1− q) u(Ra′)

]

• This is an allocation problem Φ(a, y , π) with:

1. Non-linear frontier (see Legros-Newman, 2007)
2. Search Frictions: matching is probabilistic
3. Many-to-one matching ex ante (one-to-one ex post)
4. Maximization problem “inside” match value (wrt. a′ and λ)
5. Equilibrium prices



Solution

• The FOCs (a′, λ) to the maximization problem satisfy:

−u′(a− a′) + βR
[
qu′(ce) + (1− q) u′(Ra′)

]
= 0

βq′
[
u (ce)− u(Ra′)

]
+ βu′ (ce)

m′π

λm
= 0

i.e., consumption smoothing and optimal job search

• Optimal Allocation: maxy Φ(a, y , π)⇒ Φy + Φπ
∂π
∂y = 0,

implies:

βqu′(ce)

(
vy −

π′

m

)
= 0



Solution
TU – NTU

u(x)

v(y)

u(x)

v(y)

u(x)

v(y)

• TU:
max
y

f (a, y)− π(y) ⇒ fy = π′(y)

• NTU:

max
y

Φ(a, y , π) ⇒ Φy + Φπ
∂π

∂y
= 0
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Solution
Monotone Matching

• The allocation problem of a to y with frontier Φ(a, y , π)

• Supermodularity of Φ:

d2

dady
Φ = Φay + Φπy

∂π

∂y
= Φay −

Φy

Φπ
Φπa,

• Higher a apply to higher y ⇐⇒ Φ supermodular

Φay >
Φy

Φπ
Φaπ

−u′′(a− a′)a′y >
βqu′(ce)fy

βqu′(ce)−1
m

(−u′′(a− a′)a′π)
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Sorting

• From Implicit Function Thm (where φ is the maximand of Φ)

a′y > −mfya
′
π(

φa′y + mvyφa′π
)
φλλ < (φλy + mvyφλπ)φa′λ

· · ·
0 < βu′(ce)

m′

λ
vyφa′λ

• Positive sorting of a on y ⇐⇒ φa′λ > 0

βR

(
q′[u′(ce)− u′(Ra′)] + u′′(ce)

πm′

λm

)
> 0,



Assets – Productivity allocation

Using the FOC that φλ = 0:

m′π

λm
= −q′ u(ce)− u(Ra′)

u′(ce)

Proposition
Workers with higher initial asset levels a will apply for more
productive jobs provided

u′(ce)− u′(Ra′)

u(ce)− u(Ra′)
<

u′′(ce)

u′(ce)
(U)



Assets – Productivity allocation
u′(ce )−u′(Ra′)
u(ce )−u(Ra′) < u′′(ce )

u′(ce )

• Within HARA, condition (U) is equivalent to DARA:

< CRRA – log
= CARA – risk neutrality
> quadratic

• DARA, u′′

u′ < 0 (or positive risk prudence u′′′ > 0):
• sufficient for small w
• not for large w ; counter example: Taylor exp, arbitrary u′′′′



Assets – Productivity allocation
Under condition U ≈ DARA

• High asset workers (a ↑):

1. apply for high productivity jobs (y ↑)
2. typically earn higher wages (w ↑)
3. have higher unemployment (λ ↑⇒ q(λ) ↓)
4. have higher expected consumption (c ↑)
5. have higher expected utility (U ↑)

• High productivity firms (y ↑):

1. typically post higher wages (w ↑)
2. attract higher asset workers (a ↑)
3. have higher expected profits (π ↑)
4. fill vacancies faster (λ ↑⇒ m(λ) ↑)



Equilibrium Properties

Under condition U (≈ DARA)

• High asset holders have higher risk tolerance

• High productivity firms want to hire with high probability
⇒ post high wage

⇒ natural complementarily between assets and productivity

But, there is no technological complementarity (or single
crossing condition)
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Infinite Horizon

• The value to the unemployed U(a); employed E (a):

U(a) = max
a′,λ

{
u(a− a′) + β

[
qE (Ra′) + (1− q)U(Ra′)

]}

E (a) = max
a′

{
u(w + a− a′) + βE (Ra′)

}

• The FOC for employed is u′(w + a− a′) = βRE ′(Ra′). With
βR = 1⇒ a′ = a/R = βa:

E (a) =
1

1− β u (w + (1− β)a)

• Firm problem (stationary + cloning assumption):

V (y) = max
w
{m (v(y)− w) + β(1−m)V (y)}

= max
w

{
m

1− β(1−m)
[v(y)− w ]

}
.
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Infinite Horizon

• We can write the problem of the unemployed U(a) = Φ as:

Φ(a, y , π) = max
a′,λ

{
u(a− a′) + β

[
q

1

1− β u (ce) + (1− q)Φ(Ra′)

]}

where

ce = (1− β)Ra′ + v(y)− π1− β(1−m)

m



Infinite Horizon

Proposition
Workers with higher initial asset levels a will apply for higher wage
jobs provided

u′(ce)− Φ′(Ra′)
1

1−βu (ce)− Φ(Ra′)
<

u′′(ce)

u′ (ce)
(U∞)

Proposition
Under condition (U∞) and for a given worker with assets a, the
job productivity y decreases in the duration of unemployment.
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Calibration

• One period is set to be 6 weeks.

• a ∈ A = [0, 300] and y ∈ Y = [100, 200]

• u(c) = log(c), f (y) = y , q(θ) = θ(1 + θγ)
1
γ

Parameter Definition Value

β discount factor 0.99
r interest rate 0.005
b unemployment benefit 60
k cost of vacancy 50
λ Probability of Separation 0.03
γ elasticity of matching fn 1.2



Characterization of the Steady State

u(%) avg(θ) avg(w)

4.7% 1.11 148.22
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Figure: Allocation of firms and workers in labour market



Probability of job finding and Wage

Figure: probability of job finding and wage as a function of asset



Value of workers and firms

Figure: The value of unemployed workers as a function of asset and
firms as a function of productivity



Distribution of asset and productivity

Figure: Distribution of workers and firms
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Welfare Effects of UI

Is UI welfare improving?

1. Consumption

2. Allocation and probability of job finding

3. Firms entry
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Optimal UI and asset holding
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Consumption
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Allocation
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Unemployment and Firms entry

Figure: Unemployment rate and total vacancies as a function of
unemployment benefit
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Comparison

Aiyagari(1994)

• The employment process is exogenously given

• UI and taxes are nondistortionary

• Welfare is monotonically increasing in benefit

Krusell et al(2010)

• Frictional labour market, Nash bargaining, homogenous firms

• Same probability of job finding for all workers

• Asset distribution does not play any role



Related empirical literature

• Silvio (AER-2006), Card, Chetty, and Weber (QJE-2007), and
Lentz (RED-2009): document that higher asset holdings lead
to prolonged job search

• Chetty (JPE-2008) shows that the elasticity of the job finding
rate with respect to unemployment benefits decreases with
liquid wealth

• Browning and Crossley (JPE-2001) show that unemployment
insurance improves consumption smoothing for poor agents,
but not for rich ones



Conclusion

• Interaction: search frictions, unemployment risk

• Wage/productivity increasing in assets

⇒ Assets affect wage inequality

• UI: interaction of consumption smoothing, distribution and
firms entry

• Productivity and labour-market outcomes



III. Directed Search

Competing Mechanisms



Competing Mechanisms

• McAfee (1993), “Mechanism Design by Competing Sellers”

• Issue: heterogeneous agents: use mechanisms (auctions,...)
instead of prices to extract rents from buyers

• Frictions in equilibrium: coordination problem

• But: number of participants in auction is determined
competitively: reservation price ↓, # agents ↑

• Eeckhout-Coles (2003), extend the contract space
(demand-contingent prices) → indeterminacy

• Peters and Severinov (1997), Peters (1998, 2000,...):
foundations large market assumptions

• Shimer (2005): demand schedule for heterogeneous
buyers/workers



Competing Mechanisms

• McAfee: finite # buyers and sellers, but ignore strategic
impact on continuation value of other agents

• Shows ∃ equilibrium in second price auction + reservation
price = seller’s outside option (moreover, is weak best
response to any other strategy profile)

• Peters and Severinov restrict attention to second price
auctions, but finite # agents, solve for the Subgame Perfect
equilibrium and take the limit as # buyers →∞

• Confirm result in McAfee: Bertrand type competition

• By undercutting other seller you can attract the market share
(though not entirely due to the search frictions)



Other Information Issues
Matching and Moral Hazard

• Matching and the hold up problem: how is investment
affected by matching of heterogeneous firms and workers?

• One solution to hold up: dynamics instead of matching
• Folk Theorem: obvious
• Che and Sakovics (Eca 2004). Holdup problem solved when

continued investment is allowed (i.e., option to delay)
• Logic: static, no investment if 1

2φI − C < 1
2φN

• But if 1
2φI − C > 0, then in a dynamic setting, one shot

deviation principle (will invest next period, so need to offer at
least 1

2φI ), and payoff:

max

{
φN − δ

1

2
φI , δ(

1

2
φI − C )

}

First payoff is accepted by other player; second rejected, in
which case invest next period.

• δ large, both deviations less than investing: solves hold up



Other Information Issues
Matching and Moral Hazard

• How does matching solve hold up problem?

• Complete information: Felli-Roberts (1999),
Cole-Mailath-Postlewaite (1993, 2001)

• Bertrand competition (not trade in full contingent contracts)
can solve hold up: return on investment is bounded by outside
option of matching with next type

• Incomplete Information: Hoppe, Moldovanu, Sela (2009):
signaling, but inefficiency does not disappear as n→∞

• HMS result: under equal bargaining shares, half of output is
wasted on signaling. Random matching can be superior to
signaling provided

Cov(x , µ(x))

Ex · Eµ(x)
≤ 1
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IV. Further Topics:

Matching and Uncertainty:

Unemployment Cycles



Motivation

• Theory of cycles, solely driven by the labor market

• Labor market by itself can generate cyclical outcomes

1. Mechanism: search behavior of the employed
2. We illustrate theory with a Quantitative Exercise



Search Behavior of the Employed



Composition Externality
Labor Force (on average)

u
7%

e

93%

→ on average half of the jobs are filled by employed



Composition Externality
Searchers

u
7%

e

93%

60%

→ on average half of the jobs are filled by employed



Composition Externality
Effective Searchers

u
7%

e

93%

60%

7%

→ on average 50% ' 7
7+7 of jobs are filled by employed



Composition Externality
Boom

u
5%

e

95%

48%

7%

→ Boom: 62% ' 7
7+5 of jobs are filled by employed



Composition Externality
Recession

u

10%

e

90%

76%

7.5%

→ Recession: 42% ' 7.5
7.5+10 of jobs are filled by employed



The Mechanism

• Pro-cyclical on-the-job search (OJS) intensity of employed

⇒ Multiple equilibria

• Strategic complementarity betw. search effort and vac.
posting due to:

1. Composition externality + job quality: newly created jobs by
employed are more productive and more prevalent in Boom:
42% (R) → 62% (B)

2. Duration: average job duration shorter in Boom

Boom: OJS intensity ↑ ⇒ composition � duration ⇒ profits ↑
⇒ v ↑ ⇒ matching prob � search cost ⇒ OJS intensity ↑
Recession: OJS intensity ↓ ⇒ composition ≺ duration ⇒
profits ↓
⇒ v ↓ ⇒ matching prob ≺ search cost ⇒ OJS intensity ↓
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⇒ Multiple equilibria

• Strategic complementarity betw. search effort and vac.
posting due to:

1. Composition externality + job quality: newly created jobs by
employed are more productive and more prevalent in Boom:
42% (R) → 62% (B)

2. Duration: average job duration shorter in Boom
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Implications

1. Large fluctuations in u, v ,EE without shifts in fundamentals

2. Jobless recovery: OJS crowds out unemployed searchers
during recovery

3. Outward shift Beveridge curve in recovery (no change match
efficiency)
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The Literature

• Multiple Equilibria in Search Markets:

Increasing Returns: Diamond (1982)
Selection: Burdett-Coles (1998)
Demand External.: McAfee (1992), Kaplan-Menzio (2014),
Schaal-Taschereau (2014)
Decreasing Returns: Golosov-Menzio (2015)
Marriage Market: Burdett-Imai-Wright (2004)
Housing Market: Moen-Nenov (2014)

• Business Cycles and Search:

Shimer (2005), Hall (2005), Hagedorn-Manovskii (2008)



The Model



The Model: Key Ingredients

1. On-the-job search

2. Job ladder (sorting)

3. Endogenous vacancy creation

• Natural setup: random arrival diff. jobs ⇒ selection +
duration issue

• All action comes from OJS of those in low productivity job
who transit to high productivity job

⇒ Focus on simple model: out of U, low prod. job; out of E high
prod.
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Agents, Actions, Payoffs + Wage Setting

• Workers: measure one; risk-neutral and homogenous
• Employed (get w) or unemployed (get b)
• Decision: Once on the job, active OJS at cost k?
• Cost of search during unemployment (or passive OJS)

normalized to zero
• Objective: maximize discounted value of employment

• Firms: large number; ex-ante homogenous and risk-neutral
• Decision: post a vacancy at cost c ; free entry
• Ex-post heterogeneity in their job productivity y ∈ {y , y}:

y for UE match, y for EE match → Job ladder
• Objective: maximize discounted sum of profits

• Wage setting: sequential auction; firms match outside offers
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No Active OJS
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Firms
Bellman Equations

rV = −c + q(θ(Ω))

[
u

s(Ω)
J +

λ(Ω)γ

s(Ω)
J − V

]
+ V̇

rJ = py − w(Ω)− [λ(Ω)m(θ(Ω)) + δ](J − V ) + J̇

rJ = py − w(Ω)− δ(J − V ) + J̇

where

• Ω ∈ [0, 1] all workers’ search decision

• we suppress time indices

• θ(Ω) = v
s(Ω) = v

u+λ(Ω)γ

• w(Ω),w(Ω) set by PVR bargaining Wages
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Workers
Bellman Equations

rU = pb + m(θ(Ω))(E − U) + U̇

rE = w(Ω)− ωpk + λ(ω)m(θ(Ω))(E − E )− δ(E − U) + Ė

rE = w(Ω)− δ(E − U) + Ė

where

• ω ∈ [0, 1] individual worker’s search decision
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Bellman Equations

rU = pb + m(θ(Ω))(E − U) + U̇

rE = w(Ω)− ωpk + λ(ω)m(θ(Ω))(E − E )− δ(E − U) + Ė

rE = w(Ω)− δ(E − U) + Ė
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Labor Market Dynamics

γ̇ = um(θ(Ω))− γ[δ + λ(Ω)m(θ(Ω)]

ξ̇ = γλ(Ω)m(θ(Ω))− ξδ
1 = u + γ + ξ



Equilibrium

Definition
An equilibrium is a path
{Ut ,E t ,E t ,Vt , Jt , Jt , θt ,w t ,w t , ut , γt , ξt , ωt ,Ωt} s.t. for all t ≥ 0

1. Ut ,E t ,E t ,Vt , Jt , Jt satisfy the Bellman equations above;

2. Given Ωt , ωt = Ωt maximizes E t ;

3. There is free entry: Vt = 0;

4. Wages: w t such that E t = Ut and w t such that Jt = Vt ;

5. ut , γt , ξt satisfy the laws of motion;

6. limt→∞ Jt is finite for initial conditions u0, γ0, ξ0.



Multiple Steady State Equilibria: Existence

• Check one-shot deviations of workers in y -jobs in interval dt
• Denote E (ω|Ω): value of y job when worker action is ω given

Ω
1. Ω = 1: all workers active OJS ⇒ profitable to stop active OJS

ω = 0?

E (1|1) > E (0|1) ⇐⇒ m−1

(
k(r + δ)

λ1(y − b))

)
< θ(1).

2. Ω = 0: all workers no active OJS ⇒ profitable active OJS
ω = 1?

E (0|0) > E (1|0) ⇐⇒ θ(0) < m−1

(
k(r + δ)

λ1(y − b))

)
.

Lemma
There are multiple steady states if and only if

θ(0) < m−1

(
k(r + δ)

λ1(y − b))

)
< θ(1).

Proof
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Steady State Equilibria
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Multiple Steady States: Existence

Proposition
Let m(θ) = φ αθ

αθ+1 . Then there are multiple steady state equilibria if and

only if p ∈ [pl , pu]. The set [pl , pu] is non-empty for an open set of
parameters.



Multiplicity Bounds: p

p

θ

pl ph

θ(0)

θ(1)



Multiple Steady State Equilibria: Existence
Sufficient Sorting Needed for Active OJS

Proposition
Let m(θ) = φ αθ

αθ+1 .

1. If (y − y < ε) then there is a unique steady state with no
active OJS;

2. If y is arbitrarily high (given y), there is a unique steady state
with active OJS;

3. For y ∈ [y l , yu] (given y), there are multiple steady states.

Plot



Steady State Equilibria: Properties

Proposition
Assume there are multiple steady states. Then:

1. unemployment is lower with active OJS: u(1) < u(0);

2. EE flows are higher with active OJS: EE (1) > EE (0);

and under m(θ) = φαθ/(αθ + 1)

3. vacancies are higher with active OJS: v(1) > v(0);

4. conventional market tightness is higher with active OJS:
Θ(1) > Θ(0);

5. BC (1) is shifted outward relative to BC (0)

6. BC s(1) is shifted outward relative to BC s(0)

7. Share of OJSearchers is higher with active OJS:
λ(1)γ(1)

s(1) > λ(0)γ(0)
s(0) .



Steady State Equilibria: Properties
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Steady State Equilibria: Properties
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Dynamics

• Our model can be reduced to a dynamic system in R3:
u̇(Ω), γ̇(Ω), θ̇(Ω) System

• Multiple SS equilibrium → multiple equil. paths in dynamic
economy



Saddle-Path Stability

u

γ

v

u(0)

γ(0)

vS(u, γ; 0)

vU(u, γ; 0)
u(1)
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vS(u, γ; 1)
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Validation and Quantitative Exercise



Validation and Quantitative Exercise

1. Direct evidence for mechanism: pro-cyclical search intensity

2. Quantitative exercise
• Calibrate the model to US economy
• Quantitative assessment:

• Steady States: Labor Market Fluctuations and counterfactuals
• Dynamics: Jobless recovery



The Data

• US quarterly data

• Main data source: Current Population Survey (CPS)

• Data on vacancies, unemployment, labor market transitions

• Vacancies: JOLTS (BLS) + online help-wanted ads

• Data spans 1996-2013 but main focus on Great Recession



1. Evidence on Pro-Cyclical Search
Intensity



EE Flows (Detrended)



Decomposition of EE Flows: EE = λγm(θ)

m(θ) =
UE

u
and λγ =

EE · u
UE



Decomposition of EE Flows: EE = λγm(θ)

m(θ) =
UE

u
and λγ =

EE · u
UE



Decomposing λγ

• Problem: No direct measure of search intensity λ

• Use CPS micro-data panel structure

• Check whether individuals was unemployed before current job
or transited from another job

• Construct γ (employed after UE transition) and ξ (after EE
transition)

• Then, search intensity is computed as: λ = EE
m(θ)γ



Decomposition of EE Flows: γ

ξ



Decomposition of EE Flows: λ = EE
m(θ)γ

⇒ Pro-cyclical search intensity! ATUS



2. Quantitative Exercise



Calibration

• Set parameters (r , b, δ, p, y) outside the model

• Calibrate (λ0, λ1, α, φ, c , k, y) using GMM

• Target business cycle moments from the Great Recession
• EE fluctuations (peak and trough)
• m(θ)-fluctuations (peak and trough)
• wage differentials w/w in boom (peak)
• v , u-levels in boom (peak)

• Focus on 2 data points from last cycle with largest differences
in EE

⇒ 2006Q3 boom (Ω = 1) and 2009Q3 recession (Ω = 0)



Calibration

• We do not target unemployment and vacancy levels in the
recession

• We do not restrict the estimates to fall into range of multiple
SS (we get it)



Exogenously Set Parameters

Variable Value Notes

r 0.0113 discount factor standard
y 1 productivity first job normalization

b 0.919 unemployment value 92% of y ; 58% of y (see below)

δ 0.05 job separation rate average separation rate
p 1 productivity normalization



Estimated Parameters

Estimate Parameter Description
λ0 0.092 passive OJS intensity
λ1 0.073 active OJS intensity
α 0.863 curvature matching function
φ 3.258 overall matching efficiency
c 9.404 vacancy posting cost
y 1.577 high productivity
k 0.080 search cost

⇒ Multiple Steady States Exist:
p ∈ [pl , pu] = [0.994, 1.026]
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Moments
Targeted

• Model 1: Benchmark model, multiple steady st., fixed
productivity p

Data Model
EE (1) 0.066 0.035
EE (0) 0.036 0.022
u(1) 0.047 0.055
v(1) 0.029 0.039
m(θ(1)) 0.852 0.853
m(θ(0)) 0.511 0.513
w(1)
w(1) 1.230 1.230

• Discrepancy between model and data: constant separation
rate
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Moments
Non-Targeted

Data Model
u(0) 0.096 0.089
v(0) 0.016 0.029
λ(0)γ
s(0) 0.423 0.327
λ(1)γ
s(1) 0.625 0.425



Labor Market Fluctuations

• Fluctuations between peak and trough of Great Recession

• ∆x = x(0)−x(1)
x(1)

Data Model 1 Model 2
∆EE -0.46 -0.37
∆m(θ) -0.40 -0.40
∆v -0.47 -0.28
∆u 1.06 0.60
∆θ -0.61 -0.47
∆Θ -0.74 -0.55
∆λγ/s -0.32 -0.23

Model 1: Multiple equilibria, fixed productivity ∆p = 0.

Model 2: Active OJS equil., ∆p: +2% deviation from trend in boom, -3% in

recession.



Labor Market Fluctuations

• Fluctuations between peak and trough of Great Recession

• ∆x = x(0)−x(1)
x(1)

Data Model 1 Model 2
∆EE -0.46 -0.37 -0.05
∆m(θ) -0.40 -0.40 -0.15
∆v -0.47 -0.28 -0.08
∆u 1.06 0.60 0.17
∆θ -0.61 -0.47 -0.20
∆Θ -0.74 -0.55 -0.22
∆λγ/s -0.32 -0.23 -0.02

Model 1: Multiple equilibria, fixed productivity ∆p = 0.
Model 2: Active OJS equil., ∆p: +2% deviation from trend in boom, -3% in
recession.



Jobless Recovery and Crowding Out
I. A Simple Exercise

• Myopic agents: in recession (Ω = 0) change beliefs to boom
(Ω = 1)

• Searchers:
s(0) = u(0) + λ0γ(0) → sR = u(0) + (λ0 + λ1)γ(0)

• Fraction κ of u-hires:

κ(0) =
u(0)

u(0) + λ0γ(0)
= 0.67 → κR =

u(0)

u(0) + (λ0 + λ1)γ(0)
= 0.53

• Uncond. matching probability
κ(0)m(θ(0)) = 0.34→ κRm(θR) = 0.30

⇒ Job-destructive Recovery



Jobless Recovery and Crowding Out
I. A Simple Exercise
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Jobless Recovery and Crowding Out
I. A Simple Exercise

• Effective matching probability m(θ) drops (but less so than
m(Θ))



Jobless Recovery and Crowding Out
II. Productivity-Induced Dynamics

• Multiplicity selection criterion: history-dependent beliefs
(Cooper 1994)

• Aggregate productivity p follows Markov process

• Agents are forward-looking

• Experiment: Economy has been in the recession for a while
and positive shock p ↑ induces unique equilibrium with OJS

• Limitations: saddle-path stability + linear approximation
dynamic system
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Jobless Recovery: Transition Paths
Market Tightness and Unemployment
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Jobless Recovery: Transition Paths
Composition of New Jobs
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Summary of Quantitative Results

• Fluctuations
• Model generates sizable fluctuations v , u,EE without shift

fundamentals
• Small additional fluctuations from productivity change

• Jobless recovery
• Unemployment initially grows during the recovery
• Composition of u-jobs is initially higher in recovery



Conclusion

The labor market by itself can generate cycles
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Appendix



Wages

w(Ω) = pb

(
r + λ(Ω)m(θ(Ω)) + δ

r + δ

)
− λ(Ω)m(θ(Ω))

r + δ
py + Ωpk

w(Ω) = py

Back



Proof of Lemma 1 Back

1. No deviation when no one searches: E(0|0) > E(1|0).

E(1|0) =
1

1 + rdt

[
dt(w(0)− pk) + (1− δdt)dtλ(1)m(θ(0))E + (1− δdt)(1− dtλ(1)m(θ(0)))E(0|0) + δdtU

]
where E = E(0|0).

E(0|0)(1 + rdt) > dt(w(0)− pk) + dtλ(1)(1− δdt)m(θ(0))E + (1− δdt − dtλ(1)m(θ(0)) + dt2δλ(1)m(θ(0)))E(0|0) + δdtU.

Subtracting E(0|0) from both sides and dividing by dt and take the limit
dt → 0:

rE(0|0) > w(0)− pk + λ(1)m(θ(0))E + (−δ − λ(1)m(θ(0)))E(0|0) + δU.

Substituting the equilibrium values for E(0|0),E ,U and w(0) we get:

(y − b)[λ(1)− λ(0)]m(θ(0))− k(r + δ) < 0. (6)

2. No deviation when all search: E(1|1) > E(0|1) (proceed similarly).

(y − b)[λ(1)− λ(0)]m(θ(1))− k(r + δ) > 0. (7)

Putting (1) and (2) together gives the condition in the Lemma.



Multiple Equilibria: Dynamics

• Local stability around SS

• Our model can be reduced to a dynamic system in R3:
u̇(Ω), γ̇(Ω), θ̇(Ω).

u̇(Ω) = δ(1− u)− um(θ(Ω))

γ̇(Ω) = um(θ(Ω))− (δ + λ(Ω)m(θ(Ω)))γ

θ̇(Ω) =
m(θ(Ω))u

(1− η(θ(Ω)))(u + λ(Ω)γ)
×
[
λ

u

(
− θ(Ω)c

m(θ(Ω))
+ J

)(
−u̇λ(Ω)

u
+ γ̇

)
−(py − w(Ω)) +

(
c

q(θ(Ω))

u + λ(Ω)γ

u
− λ(Ω)γ

u
J

)
(r + δ + λ(Ω)m(θ(Ω)))

]

Back



Condition for Multiple Equilibria Back

Necessary and sufficient condition for existence of multiple steady states

−
2(φλ0 + 2r)

4α(φλ0 + r)
+ y − α2pφb +

√
α2(−8cr2(φλ0 + r)(2cr − αpφ(y − b)) + (cr2(φλ0 + 2r) + αpφ(−(y − b)(φλ0 + r)))2)

4α2cr(φλ0 + r)

<
kr

α
(
φλ1(y − b)− kr

) < − 2(φ(λ0 + λ1) + 2r) + kr

4α(φ(λ0 + λ1) + r)
+ y − α2pφb

(ME)

+

√
α2(−8cr2(φ(λ0 + λ1) + r)(2cr − αpφ(y − b − k)) + (cr2(φ(λ0 + λ1) + 2r) + αpφ(kr − (y − b)(φ(λ0 + λ1) + r)))2)

4α2cr(φ(λ0 + λ1) + r)

Multiplicity bounds in terms of p:

pl =
2cλ1r(y − b)[k(λ0 + λ1) + λ1(y − b)]

α[λ1φ(y − b)− kr ][b2λ1 + k(λ0 + λ1)y + λ1(y − k)y − b(kλ0 + λ1y + λ1y)]

pu =
2cλ1r(y − b)

α(y − b)[λ1φ(y − b)− kr ]
,
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Decomposition of EE Flows: ξ

Back



Beveridge Curves

Steady state flow equations:

u =
δ

δ + m(θ(Ω))

γ =
δm(θ(Ω))

[δ + m(θ(Ω))][δ + λ(Ω)m(θ(Ω))]
.

Beveridge Curves BC and BC s :

v =
δu(1− u)[2λ(Ω)(1− u) + u]

α[u(δ + φ)− δ][λ(Ω)(1− u) + u]
(BC )

v = − (δs(2δ(−1 + s) + φ(λ(−2 + s) + s −
√
λ2(−2 + s)2 + s2 − 2λs2))

−2αδ(δ + 2λφ) + 2α(δ + φ)(δ + λφ)s
(BC s)

Back



American Time Use Survey
Reporting non-zero search time
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American Time Use Survey
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Multiplicity Bounds: y (y = 1)
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Decomposition of EE Flows: EE = λγm(θ)

m(θ) =
UE

u
and λγ =

EE · u
UE



Decomposition of EE Flows: EE = λγm(θ)

m(θ) =
UE

u
and λγ =

EE · u
UE



Decomposing λγ

• Problem: No direct measure of search intensity λ

• Use CPS micro-data panel structure

• Check whether individuals was unemployed before current job
or transited from another job

• Construct γ (employed after UE transition) and ξ (after EE
transition)

• Then, search intensity is computed as: λ = EE
m(θ)γ



Decomposition of EE Flows: γ

ξ



Decomposition of EE Flows: λ = EE
m(θ)γ

⇒ Pro-cyclical search intensity! Back
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IV. Further Topics:

Matching and Uncertainty:

Stochastic Sorting



Motivation

• Matching problem (Becker 1973) with stochastic types:

1. match → ex ante characteristics x , y
2. output → ex post realizations ω, σ

• Realistic + can confront model with data:

1. Attributes change
2. Account for mismatch
3. Noise is part of model



Examples

x → ω

y → σ

x , y ω, σ

Marriage x : man’s education ω : income
y : woman’s education σ : income

Job Market x : MBA degree ω : worker productivity
y : job level/position σ : realized demand/technology

Executives x : past experience ω : CEO performance
y : initial market value σ : stock price change



Examples

x → ω

y → σ

x , y ω, σ

Marriage x : man’s education ω : income
y : woman’s education σ : income

Job Market x : MBA degree ω : worker productivity
y : job level/position σ : realized demand/technology

Executives x : past experience ω : CEO performance
y : initial market value σ : stock price change



Examples

x → ω

y → σ

x , y ω, σ

Marriage x : man’s education ω : income
y : woman’s education σ : income

Job Market x : MBA degree ω : worker productivity
y : job level/position σ : realized demand/technology

Executives x : past experience ω : CEO performance
y : initial market value σ : stock price change



Application
Mismatched CEOs

• There is randomness CEO compensation + firm performance

• There is Sorting (Gabaix-Landier, Terviö)

→ And... many CEOs are the wrong (wo)man for the job

• What is role of:

1. Effort
2. Sorting
3. Mismatch

⇒ Estimate the technology and distributions
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Related Work

1. Mismatch: confronting matching models with reality
• Search Frictions: Shimer and Smith (2000)
• Learning: Anderson-Smith (2011)
• Matching under uncertainty (Het. pref.): Chiappori-Reny

(2005), Legros-Newman (2007) (no mismatch); Chade (2006)
• Unobserved heterogeneity + multidimensional types:

Choo-Siow (2006) Galichon-Salanié (2011), Lindenlaub (2012)

2. CEO compensation
• “Luck” (noise uncorrelated with effort): Bertrand-Mullainathan
• Sorting: Gabaix-Landier, Terviö
• ...



Motivation
Overview of Model Features

• Attributes (types) are stochastic → change over time

• Hetereogeneity in endowments

• Traits of matched partners are uncertain when match forms

• Who matches with whom?
• Matching based on ex ante attributes
⇒ Ex ante: no mismatch (Becker)
• Match value and payoff depend on ex post realization of types
⇒ Ex post: mismatch

• No rematching



The Model Setup
General Framework

• Agents

Workers: x → ω ∼ F (ω|x)

Firms: y → σ ∼ G (σ|y)

→ joint distribution K (ω, σ|x , y)

• Output:

q(ω, σ)

• Competitive equilibrium/stability/efficient matching µ(x)

• Remark:
• Special Case: Independence K (ω, σ|x , y) = F (ω|x)G (σ|y)
• Assume continuous variables with K ,F ,G , q smooth



The Model Setup
General Framework

• Agents

Workers: x → ω ∼ F (ω|x)

Firms: y → σ ∼ G (σ|y)

→ joint distribution K (ω, σ|x , y)

• Output:

q(ω, σ, x , y)

• Competitive equilibrium/stability/efficient matching µ(x)

• Remark:
• Special Case: Independence K (ω, σ|x , y) = F (ω|x)G (σ|y)
• Assume continuous variables with K ,F ,G , q smooth



Transferable Utility (TU)

• The expected surplus of a match between a type x and y :

V (x , y) =

∫ ω

ω

∫ σ

σ
q(ω, σ)k(ω, σ|x , y)dωdσ

where k is the density of K

• Determinants of equilibrium allocation:

1. Complementarity of match output q(ω, σ)
2. Distributions K (ω, σ|x , y)→ stochastic dominance



Transferable Utility (TU)

Theorem
(i) If K is supermodular (submodular) in (x , y), then

PAM (NAM) if q is supermodular (submodular) in (ω, σ)

(ii) If
∫ ω
ω

∫ σ
σ K is supermodular (submodular) in (x , y), then

PAM (NAM) if qωσ is supermodular (submodular) in (ω, σ)

→ Condition on q is necessary if result to hold for all K

→ Proof: applying integration by parts iteratively sketch proof



Transferable Utility (TU)

• Special case: cond. independence: K = F (ω|x)G (σ|y) and
FOSD (Fx < 0,Gy < 0)
• If F and G degenerate, then we recover Becker
• cov{ω, σ} positive under PAM and negative under NAM

• If K (ω, σ|x , y) log-supermodular in (ω, σ, x , y) then
• K (ω, σ) log-supermodular
• K (ω|σ) and K (σ|ω) FOSD
⇒ Stochastic notion of PAM in (ω, σ): higher ω → higher σ



Transferable Utility (TU)
Some Observations

• TU: simple and tractable

• But: ex post payoffs not pinned down (∃ continuum of splits)

• Most applications: information on ex post payoffs

• Non-linear preferences: pins down ex post payoffs

1. Risk Sharing
2. Contracting under moral hazard



Non Transferable Utility (NTU)
Risk Sharing

• Stochastic characteristics ⇒ Uncertainty ⇒ Risk sharing

Φ(x , y , v) = max
cx ,cy

∫ ω

ω

∫ σ

σ
u(cy (ω, σ))k(ω, σ|x , y)dωdσ

s.t. cx(ω, σ) + cy (ω, σ) = q(ω, σ) ∀ (ω, σ)
∫ ω

ω

∫ σ

σ
u(cx(ω, σ))k(ω, σ|x , y)dωdσ ≥ v

• Pins down consumption and thus ex post payoffs



Non Transferable Utility (NTU)
Risk Sharing

• NTU matching problem ⇒ Legros and Newman (2007)

• PAM (NAM) ⇔ Generalized Increasing (Decr.) Differences

• Differential version of their condition (Spence-Mirrlees):
• PAM if and only if

Φxy >
Φx

Φv
Φvy

• Focus on K (ω, σ|x , y) = F (ω|x)G (σ|y) and FOSD



Non Transferable Utility (NTU)
Overview of Main Results

• Sorting pattern only depends on q, not on distributions
• if one side is risk neutral (e.g. firm); or
• both sides have CARA preferences
→ PAM if qωσ > 0

• If u is HARA (CRRA, log, CARA, quadratic,...)

→ PAM if q̂ωσ > 0 where q̂ is a transformation of q
e.g. CRRA: u = cα

α then q̂ = qα

α(1−α)1−α

• If u is HARA (with DARA), h(ω, σ) = ω + σ, and
F (ω|x) = F

(
ω−x
s

)
and G (σ|y) = G

(σ−y
t

)

→ optimal sorting is NAM (riskiness constant ⇒ insurance driven
by DARA and income effect: match high with low)
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Application: Mismatched CEOs

• NTU ⇒ pins down ex post payoffs

• Executives match with firms

• Key assumptions: only new hires

1. Frictionless matching
2. Moral hazard within a match
3. No rematching, no separation

• Variation Holmström-Milgrom linear contracting model



Mismatched CEOs
Holmström-Milgrom with Matching

• Large number of risk averse CEOs, risk neutral firms

• Linear contracting model

• CEO-firm pair (x , y) match. Timing:

1. Firm offers output-contingent (q) contract
2. CEO type ω realized (public); CEO chooses effort e
3. Firm type σ realized (not observed) → output q observed
4. Payments as specified in the contract

• Output: q = m(ω, y)(e +σ) where ω, σ ∼ N ,mω > 0,my > 0

• Linear contracts (α, β): w(q, ω) = β(ω) + α(ω)q

• CEO: CARA preferences −e−r
(
w− e2

2

)
; Reservation wage a(x)



Mismatched CEOs
Optimal Contracting Problem

• Principal’s problem is (where β, α, e depend on ω):

max
β,α,e

∫
(E[q|e]− (β + αE[q|e])) dF (ω|x)

s.t.

∫ (
E
[
−e−r

(
β+αq− e2

2

)])
dF (ω|x) ≥ −e−ra (PC)

e ∈ arg max
ê

∫
−e−r

(
β+αq− ê2

2

)
dG (σ|y), ∀ω (IC)

where q = q(ω, σ, y), α(ω), β(ω), e(ω)

• Remark: (PC) is ex ante, before ω is revealed, while (IC)
must hold for each realization of ω



Mismatched CEOs
Sketch Derivation and Optimal Contract

• (IC)⇒ α(ω) = e(ω)/m(ω, y) for all ω

• Insert into objective function and (PC)

• Optimal Contract (α(·), β(·), e(·)) is

α(ω) =
1

1 + rs2(y)

β(ω) = a(x)− m(ω, y)t(y)

1 + rs2(y)
+

m2(ω, y)

2 (1 + rs2(y))2

(
rs2(y)− 1

)

e(ω) =
m(ω, y)

1 + rs2(y)



Mismatched CEOs

• Equilibrium:

w = a +
m2

2 (1 + rs2)
+

m

1 + rs2
σ

π = mt − a +
m2

2 (1 + rs2)
+

rs2

1 + rs2
mσ

q =
m2

1 + rs2
+ m(t + σ)

• Ex ante Match Surplus:

V (x , y) =

∫ ∫
q(ω, σ, x , y)dF (ω|x)dG (σ|y)

= mkt +
m2(k2 + u2)

1 + rs2



Mismatched CEOs
Endogenous Outside Option a(x)

• Ex post wages w are pinned down by the optimal incentive
contract (above)

• Ex ante compensation determines a(x)

• From FOC:

max
x

V (x , y)− a(x) ⇒ a′(x) = Vx(x , x)

and therefore a(x) = a(x) +
∫ x
x Vx(τ, τ)dτ or:

a(x) +

∫ x

x

(
m(τ)k ′(τ)t(τ) +

m(τ)2(2k(τ)k ′(τ) + 2u(τ)u′(τ))

1 + rs(τ)2

)
dτ

where a(x) ∈ [0,V (x , x)].



Mismatched CEOs

• Match Value is separable ⇒ PAM ⇐⇒ Vxy > 0

V (x , y , v) =

∫ ∫ (
m2

1 + rs2
+ m(t + σ)

)
dFdG − 1

r
log(−v(x))

→ from CARA, quadratic cost, normal distribution



Mismatched CEOs
Empirical Exercise

• Work in progress!!

• What do we want to do with the model?

1. Use US data CEO compensation and firm profits to estimate:
• Match value function
• CEO and firm type distributions

2. Quantify mismatch in market for CEOs

3. Decompose value loss due to mismatch
• Forgone complementarities
• Changes in effort (incentives)



Mismatched CEOs
Data

• Data sources:
• Wages: Execucomp (Compustat) – total compensation: TDC1
• Profits: Compustat: change in MkVal

• Constructing the variables:

1. Newly hired 2010 (4 separations, 53 missing obs.)
2. Rank firms by 2010 market value: y ∼ U[0, 1]
3. Rank workers: x = y
4. w : TDC1(2011)+TDC1(2012)
5. π: MkVal(2012)-MkVal(2010)



Mismatched CEOs
Top 10 companies in sample

Company name Market Cap.
2010 (billions)

1 Chevron 183
2 Bank of America 134
3 United Technologies 72
4 Caterpillar 59
5 Bristol-Myers Squibb 45
6 Morgan Stanley 41
7 Mastercard 29
8 Celgene 27
9 State Street 23

10 Transocean 22



Mismatched CEOs
Wages
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Mismatched CEOs
Profits (Return)
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Mismatched CEOs
Implementing the Model

• Let

F (ω|x) = N
(
k(x), u(x)2

)

G (σ|x) = N
(
0, s(x)2

)
.

and m = yω



Mismatched CEOs
Implementing the Model

Ew(x) = a(x) +
x2(k2 + u2)

2(1 + rs2)

Eπ(x) = −a(x) + xkt +
x2(k2 + u2)

2(1 + rs2)

Var w(x) =
x2

2(1 + rs2)2

[
x2(u4 + 2u2k2) + 2s2(k2 + u2)

]

Var π(y) = x2t2u2 +
x2

4(1 + rs2)2

[
2x2(2k2u2 + u4)

+4r2s6(k2 + u2) + 8xtku2(1 + rs2)
]

• Solve explicitly for k, u, t, s for each x from the theory

• a(x) is obtained recursively starting from exogenous a(x)

• Only one observation for each x ⇒ use kernel(s) to obtain
Ew(x),Eπ(x),Var w(x),Var π(y)



Mismatched CEOs
Estimation: In Progress

1. Obtain estimated values for k(x), u(x), t(y), s(y)

2. Calculate V (x , y) and verify Vxy (x , y) > 0

3. Properties of q(ω, σ) and F (ω|x),G (σ|y)
• Ex post complementarities qωσ?
• Stochastic Order on the distributions Fx ,Gy?

4. How big is the mismatch? How much due to CEOs, how
much due to firm noise?

5. Use ex post types ω to conduct counterfactual experiment by
reassigning CEOs to ex post optimal match
• What is output loss due to mismatch?
• Decompose mismatch

1. due to inefficient effort provision
2. due to misallocation



Concluding Remarks

• Stochastic Sorting: Becker with realistic types

• Appealing:

1. Characteristics change
2. Mismatch in data
3. “Noise” is integral part

• Application: Holmström-Milgrom optimal contr. + matching
Preliminary Results:
1. CEOs are mismatched

• Types are not very predictable
• Strong ex post complementarity

2. Huge Loss as a share of Market Value
→ Driven by mismatch, not by changes in effort provision

∴ Focus on selection, rather than incentives
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IV. Further Topics:
Matching with Externalities:

Competing Teams



The Problem

• We analyze assortative matching with externalities
• In standard model −→ match output depends only on the

characteristics of the pair that matches
• In our setup −→ match output depends also on matching

• Natural extension of Becker (1973) −→ Many applications
• R&D competition
• Oligopoly
• Auctions

• Competing teams
• Optimal and equilibrium matching
• Inefficiency
• Policy

• Related literature:
• Small (to the best of our knowledge): Koopmans and

Beckmann (1957); Sasaki and Toda (1996)



The Setup

Overview of the model:

• Large number of heterogeneous workers (and firms)

• Two stages:
• Matching stage: Workers form teams of size two (or firms hire

them) in a competitive labor market
• Competition stage: Teams compete pairwise in output market

• Second stage induces matching with externalities in first stage
• Match payoff of a team depends on composition of other teams

• Analysis of sorting patterns:
• Planner v. Competitive Market
• Wedge between them due to externalities



The Setup

• Continuum of agents

• Each has a characteristic (‘type’) x ∈ {x , x}, x > x

• Workers form teams of size 2
• X : team with two x-type agents
• X : team with two x-type agents
• X̂ : team with one x and one x-type agents
• X < X̂ < X

• Transferable utility

• Matching µ partitions population in pairs:
• PAM µ+: half of the teams are X and half X
• NAM µ−: all the teams are X̂



The Setup

• Teams compete pairwise in downstream interaction (e.g.,
output market) against a randomly drawn team

• V (Xi |Xj): match output of team Xi when competing with Xj

• V symmetric in components of Xi , and similarly in
components of Xj

• V(Xi |µ+) = Eµ+ [V (Xi |X̃j)] = 1
2V (Xi ||X ) + 1

2V (Xi |X )

• V(Xi |µ−) = Eµ− [V (Xi |X̃j)] = V (Xi |X̂ )



The Setup

An example of V (Xi |Xj):

• Research: uncertainty about the exact outcome vi
1. Form R&D teams
2. Draw uncertain research output vi :

• vi ∈ {0, v}
• probability to get v given team composition Xi : pi = p(Xi )

(with p > p̂ > p)

3. Winner takes all: max{vi , vj} (half in case of a tie)

• Expected payoff:

V (Xi |Xj) = pipj
v

2
+ pi (1− pj)v = vpi −

v

2
pipj

⇒ e.g. V (X |X ) = vp − v

2
pp and V (X |X ) = vp − v

2
pp

⇒ V(X |µ+) = +
1

2

(
vp − v

2
pp
)

+
1

2

(
vp − v

2
p2
)



The Setup

• Planner: Takes as given output market competition and
chooses µ that maximizes sum of teams’ outputs

• PAM optimal if

V(X |µ+) + V(X |µ+) ≥ 2V(X̂ |µ−)

• NAM optimal if

V(X |µ+) + V(X |µ+) ≤ 2V(X̂ |µ−)

• Reduce to super or submodularity without externalities

V(X ) + V(X ) v. 2V(X̂ )



The Setup

• Competitive Equilibrium: Agents take market wages and
matching as given when they choose partners

• Textbook notion; large market assumption justifies belief that
they do not affect the allocation

• (w ,w , µ) such that (i) each type maximizes his payoff given
wages; and (ii) choices are consistent with µ (market clearing)

• PAM if

V(X |µ+)− w ≥ V(X̂ |µ+)− w

V(X |µ+)− w ≥ V(X̂ |µ+)− w

• This implies V(·|µ+) supermodular, or

V(X |µ+) + V(X |µ+) ≥ 2V(X̂ |µ+)

• Wages given by w = 0.5V(X |µ+) and w = 0.5V(X |µ+)
• Analogous construction for NAM
• Reduces to super or submodularity without externalities
• Two interpretations: partnerships, firms hiring teams



Sorting and Inefficiency

Proposition
There is an equilibrium with PAM allocation while there is NAM in
the planner’s solution if and only if

(i) V(X |µ+) supermodular in X ;

(ii) V(X |µ+) + V(X |µ+)− 2V(X̂ |µ+) ≤ 2[V(X̂ |µ−)− V(X̂ |µ+)]

• Intuition:

• “Supermodularity” (modified)
• Differential externality NAM outweighs “supermodularity”

• Conditions for uniqueness

• Similar conditions for NAM equilibrium, PAM planner

• Replace (i) by submodular V(X |µ−); reverse inequality in (ii)



Sorting and Inefficiency

• Additively Separable Payoffs
• V(Xi |µ) = g(Xi ) + h(µ)
• h(µ+) = 1

2h(X ) + 1
2h(X ) and h(µ−) = h(X̂ )

• PAM (NAM) equilibrium and NAM (PAM) planner iff

g supermodular (submodular)

g(X ) + g(X )− 2g(X̂ ) ≤ (≥)2[h(µ−)− h(µ+)]

• Multiplicatively Separable Payoffs
• V(Xi |µ) = g(Xi )h(µ)
• PAM (NAM) equilibrium and NAM (PAM) planner iff

g supermodular (submodular)

g(X ) + g(X )− 2g(X̂ ) ≤ (≥)2g(X̂ )
h(µ−)− h(µ+)

h(µ+)

• Need h ‘sufficiently submodular’ in X



Sorting and Inefficiency

We can also provide sufficient conditions in terms of V :

• PAM equilibrium and NAM planner if

• V (X |X ) + V (X |X ) supermodular in X
• V (Xi |Xj) supermodular in (Xi ,Xj)
• V (X |X ) concave in X

• NAM equilibrium and PAM planner if

• V (X |X̂ ) submodular in X
• V (Xi |Xj) submodular in (Xi ,Xj)
• V (X |X ) convex in X

• Interpretation of NAM equilibrium and PAM planner:
• Competition ‘strategic substitutes’⇒ V submodular in (Xi ,Xj)
• PAM planner (with convexity condition)
• Submodular in Xi ⇒ NAM equilibrium (firms do not

internalize externalitities)



Uncertainty

• Many economic environments involve uncertainty

• Patent race between research teams; Knowledge spillovers;
Auctions between competing teams; Sports competitions;...

• Important for estimation

• Set up:

1. Team composition Xi : labor market competition
2. Team generates stochastic product vi , from F (vi |Xi )
3. Output market competition z(vi , vj)

• Expected output of team Xi :

V (Xi |Xj) =

∫ ∫
z(vi , vj)dF (vi |Xi )dF (vj |Xj)



Uncertainty

• The value is ‘additively separable’ as follows:

V (Xi |Xj) = g(Xi ) + h(Xj) + k(Xi ,Xj).

Proposition
Let Si = S(v |Xi ) = 1− F (v |Xi ) denote the survival function.The
expected value V (Xi |Xj) can be written as

z(v , v) +

∫
∂z(vi , v)

∂i
Sidvi +

∫
2
∂z(v , vj)

∂j
Sidvj︸ ︷︷ ︸

g(Xi )

+
∫
∂z(v , vj)

∂j
Sjdvj︸ ︷︷ ︸

h(Xj )

+
∫ ∫

∂2z

∂i∂j
SiSjdvidvj︸ ︷︷ ︸

k(Xi ,Xj )

• The expressions for V(·|µ+) and V(·|µ−) easily follow from V



Uncertainty

Corollary
Let z(vi , vj) = avi + bvj + cvivj where a, b, c are constants and
v = 0. Then the value of the firm can be written as

Vi = (a + 2b)m(Xi ) + bm(Xj) + cm(Xi )m(Xj),

where m(X ) = E[v |X ].

• From
∫
Sidvi =

∫
[1− F (v |Xi )]dv = E[ṽ |Xi ]

• Value only depends only on mean

• It easily follows that

V(Xi |µ+) = (a + 2b)m(Xi ) +
1

2
(b + cm(Xi ))

(
m(X ) + m(X )

)

V(Xi |µ−) = (a + 2b)m(Xi ) + (b + cm(Xi ))m(X̂ )



Uncertainty
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Economic Applications

I Spillovers

II Patent Race

III Auctions between Teams

IV Oligopolistic Competition



I. Spillovers

• Spillovers can be positive or negative
• Positive: Development of a product by a firm helps another

firm when developing a competing product
• Negative: Development of a product by a firm adversely

affects prospects of the other firm

• Assume z(vi , vj) = v0 + avi + bvj , a ≥ 0, v0 > 0 large

• Assume m(X ) ≥ 0 for all X

• Then V (Xi |Xj) is given by

V (Xi |Xj) = v0 + (a + 2b)m(Xi ) + bm(Xj)



I. Spillovers

Proposition
Let z = v0 + avi + bvj , with a ≥ 0.

1. If b /∈
(
− a

3 ,− a
2

)
, the equilibrium allocation is efficient;

2. If b ∈
(
− a

3 ,− a
2

)
, the equilibrium is inefficient: if m is

supermodular (submodular), the equilibrium exhibits PAM
(NAM), while the planner’s solution exhibits NAM (PAM).

• Positive spillovers always yield efficiency
• Positive externality cannot offset private benefits

• Inefficiency can arise with negative spillovers
• It occurs when b is in a range where private benefit parameter

a is not large enough
• Hence externality can dominate private benefit effect



I. Spillovers

• ‘Romer-Lucas-like’ setup

• Output: A(µ)g(X ) where A(µ) = A(
∑

g)

• Inefficiency:
• PAM equilibrium: A(g + g)(g + g − 2ĝ) > 0
• NAM planner: A(g + g)(g + g) < A(2ĝ)2ĝ

⇒ whenever g supermodular and A(x)x is decreasing, or

A′(x) < −A(x)
x

• Analogous conditions for PAM planner, NAM equilibrium



II. Patent Race

• Interesting application of negative spillovers

• Research: uncertainty about the exact outcome vi
• A simple stochastic setting:

1. Form teams Xi and Xj

2. Draw uncertain research output vi :
• vi ∈ {0, v}
• probability to get v given Xi : pi = p(Xi ) (with p > p̂ > p)

3. Winner takes all: max{vi , vj}
• Expected payoff:

V (Xi |Xj) = vpi −
v

2
pipj

• Planner maximizes [1− (1− pi )(1− pj)]v



II. Patent Race

Proposition
Equilibrium is efficient. The allocation has PAM if p is
supermodular, NAM if p is submodular.

• Depends on large market assumption
• Random matching with opponents in a large market
• External effect of meeting a high type team is negative
• External effect of meeting a low type team is positive
• These effects cancel out

• Inefficiency can arise in small markets (known opponent)



III. Auctions between Teams

• Team composition matters in auction: better estimates of
value/cost of timber; make efficient use of bandwidth;...

• Uncertainty about outcomes: team-dependent

• Consider independent private values second price auction

• Order of events

1. Teams are formed in a competitive labor market
2. Valuation vi from distribution of valuations F (vi |Xi )
3. Random pairwise matching of teams
4. The two teams simultaneously submit their bids

• As usual, it is a dominant strategy for each bidder to submit a
bid equal to the true valuation

• Large market with anonymous participants: e.g., eBay,
telephone auctions, etc.



III. Auctions between Teams

• The value of an auction to team Xi when facing Xj is

V (Xi |Xj) =

∫ v

v
F (v |Xj)(1− F (v |Xi )dv

• Follows from

Vi =

∫ v

v

∫ v

v
max{vi − vj , 0}dF (vi |Xi )dF (vj |Xj)

=

∫ v

v

(
1− vjFi (vj)−

∫ v

vj

Fidvi − vj(1− Fi (vj)

)
dFj

=

∫ v

v

(∫ v

vj

(1− Fi )dvi

)
dFj =

∫ v

v
n(vj |Xi )dFj

= n(vj |Xi )Fj(vj)|vv −
∫ v

v
Fjn
′(vj |Xi )dvj =

∫ v

v
Fj(1− Fi )dvj

where n(vj |Xi ) =
∫ v
vj

(1− Fi )dvi
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III. Auctions between Teams

• It easily follows from V that

PAM V(Xi |µ+) =

∫ v

v

F (v |X ) + F (v |X )

2
(1− F (v |Xi ))dv

NAM V(Xi |µ−) =

∫ v

v
F (v |X̂ )(1− F (v |Xi ))dv



III. Auctions between Teams

Proposition
The equilibrium allocation is PAM while planner’s solution is NAM
if F is submodular in X for each v and

∫ v

v
F(1−F) ≤

∫ v

v
F̂ (1− F̂ )

where F = F+F
2 .

• F submodular: PAM equilibrium

• The expected value of F (1− F ) under NAM dominates PAM

•
∫ v
v F (1− F )dv = EF 2 [v |X ]− E[v |X ] larger under NAM than

PAM. For example: same mean but F̂ has higher variance



IV. Oligopolistic Competition

• Cournot duopoly with linear demand P = a− bQ.

qi =
a− 2ci + cj

3b
and Vi =

(a− 2ci + cj)
2

9b

• Costs depend on team composition ci = c(Xi ) with c < ĉ < c

Proposition
If c is supermodular, there is an interval of a, x , and x , such that
the equilibrium is NAM while the planner is PAM. Equilibrium is
efficient if c is submodular or the planner’s allocation is NAM.

• Only inefficiency: planner PAM, equilibrium NAM.
• This occurs when c is supermodular
• Set of x and x limits extent of complementarities
• Intermediate levels of a: if very low enough, externality not

strong enough to overturn the NAM equilibrium; if very high
profits and the planner’s objective are aligned

• We have results for Bertrand and consumer surplus



Policy Implications

• Sports competitions: US vs. Europe
• US: intervention for balanced competition: PAM → NAM
• Europe: laissez-faire: PAM

• We use the model with negative spillovers zi = v0 + avi + bvj

• Need to calculate wages

• Effects of policies:
1. Taxes

• Suitable taxes for hiring same type changes PAM to NAM

2. Salary Cap
• Bound on wage of high type cannot change PAM to NAM

3. Rookie Draft
• Senior and rookie high and low types
• Sequential hiring at set type dependent wages
• Low type seniors choose first
• Equilibrium with NAM
• Both senior types prefer it to PAM



Variations

We check the robustness of the results along three dimensions:

• Continuum of types
• Example with uniformly distributed types on the unit interval

and supermodular V
• Derive conditions for NAM planner/PAM equilibrium

• ‘Mixed matching’
• With externalities, planner may want to match a fraction α as

PAM and 1− α as NAM
• Not true without externalities
• α = 1 or 0 if planner’s objective function is convex in α
• We provide sufficient conditions, met in all of our applications

• Small markets
• Analogous results for small number of agents
• They take as given the allocation in a competitive equilibrium
• Planner has similar conditions for PAM/NAM as well



Conclusion

• Assortative matching with externalities
• Difficult problem in general (Koopmans and Beckmann (1957))
• We analyze a tractable framework

• Competing Teams
• Allocation problems with externalities/strategic interaction
• If inefficient: discontinuous reallocation

• Complementarities in allocation problems:
• Without externalities: correctly priced
→ no efficiency grounds for intervention
• With externalities
→ role for intervention

• Extensions:
• More than two types: Interesting mathematical problem
• Stability and core
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