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Abstract
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1 Introduction

Why are organizations designed the way they are, and why do some firms in similar circumstances choose

a different design than others? What are the welfare implications of different designs? There is substantial

evidence of heterogeneity in organizational design.1 In addition to heterogeneity, the same evidence shows

a significant relation between productivity and a measure for the quality of the organizational design.

This implies that some designs can be (Pareto) ranked as “better” than others. The purpose of this

paper is to provide a theoretical foundation for the persistence and continuity of differences in designs.

The design here is interpreted as the prevailing norm within the firm. Then we ask what the welfare

implications are for economies in which firms with different norms coexist.

The central premise in this paper is that outside employment opportunities shape the organizational

design of a firm. Employee relationships are increasingly governed by the appearance of market forces.2

The traditional firm-employee relation of life-long commitment, with a fair day’s work that was uniquely

rewarded through internal promotions, has long gone. But a fine balance remains between a long-term

relationship based on trust, flexibility, performance, and a spot market. Relationships are long-run

agreements that are not enforceable, but market forces and outside options determine the terms of the

agreement: employees get rewarded for high degrees of cooperation, and other job opportunities fix the

negotiated agreement.

To capture the interplay between market forces and non-market interactions within the firm, we model

this economy as a repeated partnership problem with an endogenous outside option. The outside option

consists in the ability of any partner to leave the current partnership and join a new partnership, selected

at random and anonymously. In our model, all partners are ex ante identical. Even though myopically,

the best response is not to cooperate in a partnership, cooperation can be sustained in equilibrium, when

interaction is repeated. However, because there is an outside option in leaving the firm to form another

partnership, punishment is determined endogenously. This will establish the main result: differences

in firm norms (i.e. the existence of firms with bad norms) will provide sufficient incentives to sustain

cooperation in good norms. This leads to the observation that ex ante identical firms adopt different

organizational designs.3 This is surprising because intuitively, one would expect that competitive pressures
1See for example Kotter and Heskett (1992) and Cappelli and Neumark (1999). They quantify measures of commitment,

rules, compensation packages, cooperation,... which are commonly labeled as corporate culture or norms.
2Our approach is complementary to Hermalin (1994). He considers the effect of product (rather than labor) market

competition on the organizational form of the firm.
3A familiar example is the difference in design between UPS and FedEx. Both firms are comparable in terms of the

services provided, the output generated,... Moreover, both firms employ full time employees that are very similar in terms

of ability. Still, there is a substantial difference in wages (30 to 50% higher for a driver in UPS), turnover (the majority of
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would decrease differences between firms, rather than generate differences. Why should bad firms persist

in the long run – and they do in reality –? The rationale proposed here is based on the incentives that

are needed to sustain the good firms.

The implication of this theory is that a firm’s norm persists, even though its members are changing over

time. Because members enter the partnerships at different times, the new entrant adopts the prevailing

norm.4 But even if all partners have turned over, the norm has not changed. Recent evidence by Jovanovic

and Rousseau (2000) establishes that organizational capital is persistent over time. Looking at historical

data, they find that firms maintain productivity differences over very long stretches of time.

Our theory draws heavily on existing work on repeated games and random matching (Datta (1993), Greif

(1993), Kranton (1996), Ghosh and Ray (1996)). This work shows that in the context of random matching,

cooperation can be sustained through symmetric strategies that exhibit increasing degrees of cooperation.

This makes cooperation incentive compatible, because after a deviation, in a new partnership there is

a period of costly low cooperation before full cooperation is established. In equilibrium, partnerships

exhibit increasing compensation schedules: because effort (or cooperation) initially is low, compensation

is low, and eventually, increasing cooperation leads to an increase in compensation.

However, our paper differs in essence from this literature by solving for equilibrium strategies that are

more efficient. First, we show that asymmetric strategies (in some partnerships there is, and in others

there is no cooperation) can obtain cooperation in equilibrium (as opposed to symmetric strategies with

increasing levels of cooperation). Second, and more importantly, we establish that asymmetric strategies

are more efficient than symmetric strategies (i.e. with increasing compensation schedules). This is

surprising because increasing compensation schedules have long been recognized as effective incentive

devices. While this is true in the context of an exogenous outside option, this is no longer the case when

the outside option is endogenous as in our model.

The type of employment contracts that are observed in equilibrium is self-enforcing. They are of the

termination type, i.e. deviation is punished by termination of the employment relation (the partner

quits or is laid off).5 What is novel with respect to the existing literature on self-enforcing contracts

is the endogeneity of the outside option.6 Observe also that the outside option here does not imply

UPS employees are employed for life), and absenteeism, which indicates the degree of cooperation within the firm. There is

no doubt that the norm (or corporate culture) differs substantially between these two firms.
4This notion is reminiscent of the one proposed by Cremer (1986), where cooperation is derived in repeated games with

overlapping generations of players.
5MacLeod and Malcomson (1989) show that these contracts are contained in the set of self-enforcing contracts.
6A notable exception in this literature is the paper by Felli and Roberts (1999) who introduce the effect of competition
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unemployment. All workers are always employed. This is where the current model (and its conclusions)

starkly differs from the standard efficiency wage model (see for example Macleod and Malcomson (1989)

and Shapiro and Stiglitz (1984)). Though unemployment certainly has an incentive effect, it cannot

be ignored that a substantial (and increasing) share of job movements is job-to-job rather than job-to-

unemployment-to-job. It is precisely the option of moving between jobs that determines the equilibrium

compensation schedules. Consider an economy where firms offer a flat compensations schedule, i.e. high

compensation for a new partner. Then a firm that offers a steep compensation schedule will induce free

riding by the new partner. Though free riding implies the partner will have to leave the firm, she will be

better off since her new firm will offer a high compensation upon arrival. Free riding and quitting will

yield a higher payoff than climbing the ladder within the firm and waiting for higher future compensation.

The remainder of the paper is organized as follows. In the following section, the competing norms model

is presented. Given exogenous sharing rules, in section 3 the model is solved and it is shown how firms

differ in equilibrium. This is illustrated with an example and further discussed with some comparative

statics results. In section 4, compensation schedules are allowed to increase and the efficiency result is

derived. The robustness of the model to the introduction of capital, renegotiation and deviations by

coalition is discussed in section 5. In section 6, the implications for the model from extensions to include

heterogeneous agents, complementary inputs in production and unemployment are considered. Finally,

some concluding remarks are made.

2 The Competing Norms Model

In this section, the basic model is presented. We describe the incentives employees face when joining a

firm with a certain social norm, and define equilibrium.

Workers, Firms and the Stage Game. The economy is populated with an infinite number of identical

agents. The set of agents A has measure 1 and each agent is interpreted as an infinitesimally small subset

of A. Production occurs in organizations of a fixed and finite number of m > 2 agents. Index agents

within an organization by i = 1, ..., m. The set of all organizations is given by N and has measure 1
m . A

generic organization is referred to as n ∈ N . For the purpose of the characterization below, consider the

partition {C,D} of N , where c ∈ C is an organization with a norm of cooperation and d ∈ D is one with

a norm of non-cooperation.

on the (static) hold up problem. They show conditions under which Bertrand competition between heterogeneous agents

can solve hold up. This paper differs from theirs in two aspects: the repeated game and the fact that all agents here are

identical.
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We want to capture the notion of joint production. The stage game is therefore as Holmström’s (1982)

moral hazard in teams model. Total output y produced in an organization is a function of all individuals’

effort. Let ei be agent i’s level of effort and let e = (e1, ..., em) be the vector of all effort levels in n. The

organization’s total output produced y = Q(e) is deterministic and symmetric in ei. Agents receive a

share si(Q), ∀i of total output. The utility cost of effort to each individual is C(ei), with C convex. The

utility of agent i is given by

ui = si (Q (e))− C(ei) (1)

Given the sharing rule, agents choose their level of effort ei, they produce, and in function of the vector

e, output Q is realized. Effort is not contractible, which gives rise to the moral hazard problem. Ex ante

sharing rules are binding because they are contracted. Ex post output is perfectly observed.

In a competitive environment, firms’ profits are zero. Given a technology without physical capital, it

follows that the total wage bill is equal to total production. We have chosen this simple production

function to economize on notation. In section 5, the model is shown to be robust to the introduction of

a production function with physical capital in addition to effort. Throughout the paper, the following

assumption is maintained: the sharing rule {si(Q)} satisfies Balanced Budget:
∑m

i=1 si(Q) = Q.

Holmström (1982) shows that the solution to the static game with budget balancing sharing rules is inef-

ficient. Given the vector of effort choices by all other agents e−i, ∀ − i( 6= i) ∈ n, the best response corre-

spondence of agent i satisfies arg maxei {si (Q(ei, e−i))− C(ei)} . The Nash equilibrium effort e∗i , with cor-

responding utility u∗ satisfying (1), solves for the fixed point e∗i = arg maxei

{

si
(

Q(ei, e∗−i)
)

− C(ei)
}

, ∀i.

Pareto optimal effort eo
i yields utility uo, and satisfies eo

i = arg maxei

{

Q(ei, eo
−i)− C(ei)

}

.

Theorem 1 (Holmström) There do not exist sharing rules {si(Q)} which satisfy
∑

i si(Q) = Q, and

which yield eo
i as a Nash equilibrium in the non cooperative game with payoffs uo

i .

Would all agents cooperate and provide optimal effort levels eo, then an individual best response is to

deviate and provide effort ed 6= eo such that ed = arg maxei

{

si
(

Q(ei, eo
−i)

)

− C(ei)
}

, which yields ud.7 As

a corollary to the theorem it follows that for a given sharing rule, equilibrium effort e∗ < eo is suboptimal

and that ud > uo > u∗. The theorem holds for a general production function and for general sharing

rules.

The inefficiency result crucially hinges on the assumption of budget balancing sharing rules. A large part

of the literature has given attention to studying incentives in environments where this assumption can
7Formally, ud

i = si
�
Q(ed

i , eo
−i)
�
− C(ed

i ).
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be relaxed, for example involving an independent principal (see Holmström (1982)). Perhaps of equal

importance is the interaction between joint production and mobility across firms. Our analysis is an

attempt to complement the incentives approach.8 The objective here is to find solutions for the moral

hazard problem even in environments where the budget is balanced. This is the case for example where

it is not possible to involve a completely independent principal (for example a residual claimant principal

who cannot be stopped from colluding with one of the agents). Any dependent principal needs to be

considered as one of the employees, which brings us back to the inefficiency. In the case of partners in a

law firm for example, partners are both the owners and employees.

Matching and Monitoring. Consider now the repeated game, where utility that is delayed for one

unit of time is discounted at the common rate 1 + r. Time is discrete, and organizations of m agents

are formed through random and anonymous matching. This implies that newly matched agents cannot

observe the past history of actions of their new partners. Within any partnership, all workers choose their

input of production ei, and after production, output Q(e) is realized and shared according to the sharing

rule {si(Q)}, contracted upon ex ante. Output Q is perfectly observable and verifiable. This also implies

that players can condition their strategies on the realization of Q. Note that given m > 2, even within

partnerships there is incomplete information in the case of deviations. An agent knows that a partner

has deviated, but she does not know the identity of the deviator.

At the end of play, an agent consumes and decides whether to continue the current partnership or

to terminate it. Irrespective of whether an agent continues or terminates the partnership, there is some

exogenous attrition: with probability mα, an agent in the firm will be separated from the match. Because

out of all partners each agent has equal probability of being separated, an individual’s exogenous rate

of attrition is α. Note that while attrition is crucial for anonymity (deviators cannot be distinguished

from agents who have been separated because of attrition), α can be infinitely small. Some partnerships,

entirely or a fraction of it, may remain matched. All unmatched players go in the pool of unmatched and

get randomly assigned to a new partnership9, so that again a mass of 1
m firms of size m are formed.

When matched to a partnership and before effort is chosen, a new entrant can observe that partnership’s

last period output level. This assumption will allow the norm to play the role of a public randomization

device. Upon arrival, an agent can infer from the past output whether she is matched to a good or a bad

norm firm.
8A similarly complementary approach has been taken by Meyer (1994) in studying learning in task assignment of team

members.
9There is no friction and no agents is ever unmatched. Remaining unmatched with zero utility is an option, but never

individually rational.
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Social Norms and Equilibrium. Loosely speaking, a social norm is a totality of common character-

istics, behavior patterns, beliefs,... that applies to each organization individually. More precisely, the

social norm consists of the strategy or the behavior rule that agents follow and which will in general differ

across organizations. It is a full contingent plan of action: for a given history, in each period workers

choose effort and, after realization of Q, they decide whether or not to terminate the partnership. Of

course, we will not be looking for just any set of strategies that constitute a firm’s norm, but those that

are an equilibrium, both within the firm and in an economy as a whole.10 We return to equilibrium in

more detail below.

The interest here is in equilibria where a norm of cooperation within some firms can be maintained, despite

the non-cooperative outcome in the static game. A norm is an implicit dynamic agreement between the

agents in an organization. Because agents have the option to terminate the partnership, matching is

endogenous and the standard folk theorem for infinitely repeated games between a given set of agents

does not apply. In deriving equilibrium, we will be looking for those strategies that can support social

norms of cooperation in the presence of endogenous matching.

Two remarks. First, in concentrating on equilibria that are supported by strategies specific to each firm’s

norm, the focus is on pure strategy equilibria. Nothing prevents agents from playing a mixed strategy,

and such equilibria may exist. Second, the main objective of this paper is to derive those competing

norms that exhibit the highest degree of cooperation. As is the case with the standard folk theorem, the

set of individually rational payoffs that can be sustained in equilibrium will typically not be the singleton.

Whenever an agent is matched to a new organization, she forms a belief about the norm in that firm.

Given the norm, i.e. the belief about the strategy of all other m− 1 agents, an optimal strategy must be

a best response. An equilibrium is then described by a rule, such that given the best response of all other

agents in the economy, each player chooses effort to maximize expected discounted utility. Suppose that

all other agents cooperate, cooperation is a best response only if the payoff is higher from cooperating,

and remaining matched to the firm with a norm of cooperation. A norm of cooperation is not merely

the choice of effort, but also the decision whether or not to terminate the partnership. An agent’s best

response will depend on her belief whether her colleagues will cooperate and decide not to separate.

The outside option (i.e. the distribution of norms) will ultimately tie down the economy’s equilibrium.

This is precisely the role of different types of norms. A sequential equilibrium is then determined by all

individuals’ best replies within a firm’s norm, given the distribution of norms. The focus of attention will

be on stationary equilibria.
10As a result, norms are self-enforcing. This is by now standard in the economics literature on norms: see for example

Cole, Mailath and Postlewaite (1998), and Rob and Zemsky (1999).
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Two more remarks are worth noting. First, all matches must be individually rational. For symmetric

exogenous sharing rules, this is always satisfied as matches are formed instantaneously and being matched

has a higher value than being unmatched. The issue does have immediate relevance in the case of

asymmetric sharing rules. This issue will be taken up in section 4. Second, the assumption of having

more than two agents in a firm (m > 2) is not without consequences. We want to capture the notion

of ongoing organizations, which would be impossible for a two worker firm as it dissolves if either of the

agents terminates partnership.

3 Heterogeneity of Norms

In this section, the model is solved for exogenously given symmetric sharing rules (see for example Farrell

and Scotchmer (1988)). This assumption implies si(Q) = sj(Q) = s,∀i, j ∈ n. The problem individuals

face at the beginning of each period is to choose effort that maximizes the continuation payoff. We will

now construct an equilibrium that can sustain cooperation. Consider therefore the following strategy in

any period t after observing Qt−1:

1. at the beginning of period t

if Qt−1(e) = Q(eo), then choose e = eo

otherwise, choose e = e∗

2. at the end of period t

if Qt = Q(eo), then continue the match

otherwise, terminate the match

Suppose some firms of type c ∈ C ⊂ N exist and are characterized by the fact that all workers always

cooperate, and never choose to terminate the partnership unless other workers deviate. If all agents in

the economy use the strategy above, then the continuation payoff vo of cooperation (i.e. choosing e = eo)

in a firm of type c is given by11

rvo = uo + α [V − vo] (2)
11At the beginning of period t, the expected continuation payoff vo

t satisfies

vo
t =

1
1 + r

[uo + (1− α) vo
t+1 + αVt+1]

which, under stationarity, implies equation (2).
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An agent gets uo at the end of each period, and given the strategy above she only gets separated from the

firm due to exogenous attrition at rate α. In the case of termination, the expected continuation payoff of

entering a new match is denoted by V . Below, we will derive V explicitly. Whether or not an agent will

be willing to follow the strategy described above depends on the continuation payoff of deviating from it.

Any agent who deviates from this strategy by playing e = ed12 gets a continuation payoff vd satisfying

rvd = ud +
[

V − vd
]

(3)

It yields a higher utility ud > uo, but given the strategy by all other players, it implies that at the end of

the period, the match will get terminated: the output observed will be below the optimal level Q < Q(eo),

in which case all other players’ strategy prescribes termination.

When all players follow the strategy above, this can equally well give rise to a firm of type d ∈ D ⊂ N .

When newly matched to a firm of which Qt−1(e) 6= Q(eo) (for example because all agents are newly

matched and there was no past output). The strategy then prescribes to choose e = e∗ and to terminate

the partnership at the end of the period. The continuation payoff is then determined by the utility from

playing Nash and the expected continuation payoff of a future match:

rv∗ = u∗ + [V − v∗] (4)

The crucial variable here is the expected continuation payoff of a future match V . It is determined by the

belief any agent has about the whole population of agents’ behavior. A first preliminary result is that a

strategy where none of the agents cooperates is an equilibrium.

Proposition 2 (No Cooperation) Non Cooperative behavior, e = e∗ in all firms in N is an equilibrium

Proof. In Appendix.

We now show that equilibria do exist with cooperation, given that all players follow the strategy above.

Suppose at time t, a newly matched agent observes Qt−1(e) = Q(eo). She will follow the strategy,

provided the continuation payoff satisfies the “no deviation” constraint (ND)

vo ≥ vd (5)

This is a necessary condition for a worker to be induced to cooperate in a firm c, rather than free ride on

the other members and rematch in the next period. From equations (2) and (3), this condition can be

written as

uo ≥ α + r
1 + r

ud +
r (1− α)

1 + r
V (6)

12Below we show that no player ever wants to deviate by terminating a match after choosing eo.
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the current payoff from cooperating must be large enough to make cooperating incentive compatible. This

condition is therefore a function of ud, the utility of deviating, and of V, the expected continuation payoff

of rematching. V is determined by the distribution of norms in the economy, and it is easy to see that, in

order to induce the agent to cooperate rather than free ride, the payoff from cooperating must be larger

the larger the expected outside option V.

The outside option will pin down the equilibrium distribution of firm norms in the economy. Let F (n) be

the cumulative density function of all norms in the economy, where
∑

n F (n) = 1. We are constructing

equilibria where the norm is either one of two types: the norm c ∈ C with the optimal level of effort and

no endogenous separation; or the norm d ∈ D, with the static Nash equilibrium level of effort followed by

immediate termination. Denote f the upper bound on F (c) in equilibrium. In each period of time, the

total mass of agents in the pool of newly matched is proportional to 1− F (c) + αF (c): all the bad norm

agents rematch each period and only the exogenously separated good norm agents do so. As a result, the

fraction of newly matched workers that will be matched to a firm with a norm of cooperation is

p =
αF (c)

1− F (c) + αF (c)
(7)

This now determines the expected continuation payoff: V = pvo + (1 − p)v∗. It is the weighted sum of

the continuation payoffs of each type of firm. We can now state the main result.

Theorem 3 There exists a pair (r, α) such that for any r ∈ (0, r] and for any α ∈ (0, α], an equilibrium

exists where a fraction f of firms c ∈ C ⊂ N have a norm for cooperation, with

f = 1−
(

ud − uo
)

(r + 1)
uo (r + 1)− rud − u∗

α
1− α

< 1 (8)

Proof. In Appendix.

The fraction of firms with a norm of cooperation f as derived in the theorem is the upper bound. It now

follows immediately that an economy where all firms have a norm for cooperation (i.e. f = 1) cannot be

an equilibrium. The outside option after termination is no worse, which makes cooperation not credible.

This is confirmed by mere observation of equation (29). When f = 1, then p = γ = 1. Since ud is strictly

larger than uo, the ND constraint is always violated. The way the upper bound (8) is determined is

precisely by solving for highest possible f such that the ND is binding. Note that though agents are

identical, and even with mobility, wages (and for that matter continuation payoffs) differ between firms.

There is a gap between the utility derived from being in the high norm firm compared to the utility in

the low firm.13 This gap is necessary to stop agents from deviating.
13This result relates to Eeckhout and Jovanovic (1998), who show in a production economy that inequality necessarily

arises in a dynamic framework, when an economy-wide production externality involves higher moments of the distribution
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An Example and Some Comparative Statics Results

We illustrate the result with a simple example. Let m = 3, Q =
∑

i ei and C(e) = e2

2 . Output is shared

equally s(Q) = 1
3Q. We can calculate the Nash equilibrium effort and utility e∗ = 1

3 , u∗ = 5
18 and the

optimal effort and utility eo = 1, uo = 1
2 . Deviating when both other partners supply optimal effort implies

ed = 1
3 , ud = 13

18 . Suppose that the rate of discounting is r = 0.1 and that the exogenous termination rate

α = 0.1. Then Theorem 3 allows us to calculate f, and from equation (8) it follows that f ≈ 0.86. Eighty

six percent of the firms have a norm of cooperation, with the remaining fourteen percent having a norm

of non cooperation.

Attrition Rate. The exogenous rate of attrition has two different effects. It determines the fraction of

high cooperation jobs that are opened each period of time, and as a result, the expected value of a new

match V . Second, it also determines the probability with which cooperative behavior will be ”unjustly”

punished. Both effects go the same way:

∂f
∂α

= −
(

ud − uo
)

(r + 1)
(r + 1)uo − rud − u∗

1
(1− α)2

< 0

The higher the exogenous attrition rate, the more attractive free riding becomes and as a result, the

higher the fraction of firms with bad norms needs to be in order for cooperation to remain incentive

compatible.

Discounting. An increase in the interest rate implies that the future is discounted more which makes

agents more myopic. The more myopic agents are, the less they care about future low utility matches in

their trade off between current effort and future utility. It follows that a larger fraction of non cooperating

firms is needed to enforce cooperation, i.e. to satisfy the ND constraint.

∂f
∂r

= −
(

ud − uo
) (

ud − u∗
)

[(r + 1)uo − rud − u∗]2
α

1− α
< 0

In the limit of complete myopia, the future is not valued at all, so that all firms are non-cooperative. As

was shown in Theorem 3, there is an upper upper bound r in order to assure existence of c organizations.

Firm Size. The effect of larger organizations implies that free riding becomes more attractive. Ce-

teris paribus, an increase in m results in a higher value ud, while keeping uo and u∗ constant. This in

turn brings about a larger fraction of norms of non cooperation. Free riding is more lucrative, hence

punishment is required to be stronger (i.e. a larger probability of a bad match). Formally, we show

of types. This is the case in our model: low norm firms induce a positive externality (allowing credible punishment in the

high norm organizations).
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this for a linear additively separable production function, for which ed = e∗. Let Q =
∑

i ei, then

ud = 1
m

[

(m− 1)eo + ed
]

− C(ed), and as a result, ∂ud

∂m = eo+ed

m2 > 0. Now, it immediately follows that

∂f
∂m

= − α
1− α

(r + 1)
∂ud

∂m
uo − u∗

(r + 1)uo − rud − u∗
< 0

The larger the firms, the lower the fraction of cooperating firms. Note that this is true also for non linear

sharing rules as the budget balancing requirement implies that the budget must be balanced at any level

of effort, thereby restricting the set of admissible sharing rules.

4 Heterogeneity versus Increasing Compensation Schedules

In this section, we compare firm heterogeneity as an incentive device with wage-tenure schedules. It

has long been recognized that steep wage-tenure schedules can provide incentives within the firm (see

for example MacLeod and Malcomson (1989)). Moreover, in a context of random matching of new

partnerships, that is precisely what the symmetric strategies in Datta (1993), Ghosh and Ray (1996) and

Kranton (1996) amount to. The longer the tenure of the partnership, the higher the payoff. Therefore,

we allow compensation schedules to increase with tenure. The most important result in this section is

that conditions are identified under which heterogeneity is more efficient than wage-tenure schedules. In

addition, we show that there is a coordination problem in the setting of an increasing compensations

schedule: if all firms choose a steep schedule, a firm will set a steep schedule whereas if the schedule is

chosen flat if all firms choose a flat schedule.14

We distinguish between junior and senior workers, indexed by the subscript j and s respectively. Junior

workers are new entrants to the firm. Seniors are all other incumbent workers. Being junior lasts until a

senior gets separated (or until the junior gets separated herself). In every firm, there is one junior and

m − 1 identical seniors.15 As before, output shares are contracted upon ex ante: sj(Q) for juniors and

ss(Q) for seniors. As a result, the flow utility to any agent is ui = si (Q (e))− C(e), ∀i ∈ {j, s}.

In what follows, we make the following assumption:
14Note also that because we have stage games of more than two players and entry into the partnership is not simultaneous,

the incentive scheme here can involve full cooperation in each period, i.e. there need not be inefficiency in production.
15All senior incumbents are treated equally. There is no a priori reason to do so. What is captured here is that all m− 1

senior incumbents enter jointly as one party - the organization - in the market for junior applicants. While this simplification

already conveys the main message of introducing a market, it reduces the complexity of the problem considerably. Of course,

the model could be extended to the case of a complete seniority schedule. In that case, there would be “a market” between

each level in the organization.
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Assumption A. Q (e) =
∑

i ei and si (Q (e)) = siQ (e)

Assumption A does not affect the results qualitatively and is made mainly because of analytical con-

venience. Some of the results have been extended for more general sharing rules, but at the cost of

tractability. Note that a different assumption made earlier – balanced budget – does affect the results

qualitatively (see Holmström (1982)).

4.1 Exogenous Sharing Rules

For a given, exogenous sharing rule {sj , ss}, we can now derive the equivalents to equations (2),(3),(4).

Let vo
j denote the continuation payoff in a type c firm when junior and vo

s when senior. In the firms

of type d, all workers are newly matched and the surplus is split equally. A junior worker now has the

prospect of becoming senior16:

rvo
j = uo

j + α
[

V + (m− 1) vo
s −mvo

j
]

(9)

rvo
s = uo

s + α [V − vo
s ] (10)

The continuation payoff in a firm of type d is as before: rv∗ = u∗ + [V − v∗]. The fundamental difference

in a firm of type c is that when joining the firm as a junior, there is the prospect of becoming a senior.

Once a senior has been separated exogenously, the junior gets promoted to senior and a new junior is

hired. Because a senior in general receives a share of the output different from that of a junior, there is

a gap between the continuation payoff of a senior and that of a junior. Let ∆ be defined as ∆ = vo
s − vo

j ,

then equation (9) can be written as rvo
j = uo

j + α
[

V − vo
j + (m− 1)∆

]

. Using equations (9) and (10),

for any given sharing rule {sj , ss} , ∆ is given by

∆ =
uo

s − uo
j

r + mα
(11)

It is now shown that it is decreasing in sj .

Lemma 4 For any given sharing rule {sj , ss}: ∂∆
∂sj

< 0.

Proof. Since eo
j = eo

s = eo, and uo
i = si(Qo) − c(eo), the utility difference is equal to uo

s − uo
j =

ss (Qo)−sj (Qo) . Under budget balancing, sj(Q)+(m−1)ss(Q) = Q which implies uo
s−uo

j = Qo−msj(Qo)
m−1 .

Taking the derivative of (11) with respect to sj :

∂∆
∂sj(Q)

=
−m

(r + mα) (m− 1)
< 0

16At the beginning of period t, the continuation payoff (given stationarity) satisfies

vo
j =

1
1 + r

�
uo

j + αV + (1− αm) vo
j + (m− 1)αvo

s
�
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This completes the proof.

Not surprisingly, for sj = ss, there is no difference in the continuation payoff of juniors and seniors:

∆ = 0. Then from Lemma 4, for any ss > sj , ∆ is strictly positive. As in the former section, we calculate

the continuation payoff of a deviator (junior and senior) when in a type c firm:

rvd
i = ud

i +
[

V − vd
i

]

, ∀i ∈ {j, s} (12)

No deviation by any agent in a firm of type c requires the condition ND to be satisfied for both juniors

and seniors, i.e.

vo
i ≥ vd

i ,∀i ∈ {j, s} (13)

With authority, the firm in addition has to ensure that the sharing rules are individually rational (IR) for

the junior. Because the outside option is endogenous, any agent will reject offers which give a continuation

payoff that is lower than in a firm of type d:

vo
j ≥ v∗ (14)

Note that this allows for utilities in a c firm that are lower than those in a d firm: ∃sj : uo
j < u∗. In fact,

when the IR constraint is binding, utility uo
j may even be negative. The following lemma derives a lower

bound on sj .

Lemma 5 There is a lower bound sj on the sharing rule, satisfying

sj

(

Qd
)

− c(ed
j ) = u∗ (15)

Proof. In appendix

At sj = sj , vo
j = v∗ and any agent is indifferent between joining an organization with a norm c or one

with a norm d. Given this sharing rule, there is no longer any involuntary continuation payoff difference,

in the sense that workers are indifferent and hence equally well off in both types of firms. That does not

rule out the existence of the two types of different norms.

For any exogenously given sj , ss, proposition 6 now establishes the existence of equilibrium and derives

the distribution of firms in the presence of authority. This Proposition is the equivalent of Theorem 3,

where sj = ss.
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Proposition 6 (Exogenous Asymmetric Sharing Rules) Under assumption A, there exists a pair

(r̂, α̂) such that for any r ∈ (0, r̂] and for any α ∈ (0, α̂], and for a sharing rule {sj , ss}c, ∀c ∈ C, where

sj ∈ [sj , ss], an equilibrium exists where a fraction f of firms c ∈ C ⊂ N have a norm of cooperation, with

f = 1−

(

ud
j − uo

j

)

(r + 1) + α(m− 1)∆

uo
j (r + 1)− rud

j − u∗j + α(m− 1)(1 + r)∆
α

1− α
(16)

Proof. In appendix

The proposition states that equilibrium exhibiting authority relations within firms with a norm of coop-

eration, exists. In fact, any type of authority is an equilibrium (i.e. the proposition holds for any feasible

sj) as long as all firms in C use the same exogenous sharing rule. We have derived equilibrium when

authority is “assumed”. We now turn to the case where the sharing rule (i.e. the price for entry) is

determined in equilibrium. Authority is endogenous.

4.2 Endogenous Sharing Rules: Limited by the Market

Consider an organization with a norm of cooperation. Juniors are better off in the high norm firm than in

a low norm firm, from the IR constraint (14). Lemma 7 shows that whatever the symmetric equilibrium

sharing rule {sj , ss} in the economy, seniors increase their continuation payoff by decreasing sj .

Lemma 7 The continuation payoff of a senior worker is increasing with decreasing sj

∂vo
s

∂sj
< 0

Proof. From equation (10) it follows that

vo
s =

1
r + α

{uo
s + αV }

Derivation with respect to sj ,
∂vo

s

∂sj
=

1
r + α

∂uo
s

∂ss

∂ss

∂sj

which is negatives since budget balance implies that ∂ss
∂sj

< 0.

Now within each firm, we allow for the seniors to determine sj . An equilibrium with endogenous shar-

ing rules is now as before, with the additional requirement that the budget balancing sharing rule

{sj , ss}c , ∀c ∈ C for each firm is optimally chosen to maximize vo
s , given the choice of an optimal sharing

rules by all other firms {sj , ss}−c , ∀ − c( 6= c) ∈ C, subject to the ND and IR constraints. From Lemma

7, it seems as if seniors will want to choose sj as low as possible (sj = sj). Proposition 8 shows that in
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general this is not true and establishes that there is a limit to the rents the senior incumbents can extract

from the entrants. The entrants willingness to provide effort depends on the sharing rule that is set in all

other firms (i.e. the continuation payoff from deviation). If all other firms set a high sj , then deviating

is more attractive, so firm i will choose a high sj to stop the entrant from deviating.

Proposition 8 (Endogenous Sharing Rules are Limited) Under assumption A, there exists a pair

(r∗, α∗) and an r̂ such that for any r ∈ [r∗, r̂] and for any α ∈ (0, α∗), an equilibrium exists where seniors

in a firm c ∈ C with a norm of cooperation, choose {sj , ss}c = {sj , ss}−c, satisfying sj ∈ [sj , ss] and where

the fraction f of firms in C is

f = 1−

(

ud
j − uo

j

)

(r + 1) + α(m− 1)∆

uo
j (r + 1)− rud

j − u∗j + α(m− 1)(1 + r)∆
α

1− α
(17)

Proof. We proceed to prove the proposition in two steps. First, in Lemma 9 we show that, for a given

sharing rule of all other firms {sj , ss}−c, firm c’s best response is {sj , ss}c = {sj , ss}−c . Then we apply

Proposition 6 to show existence and derive f as in equation (17).

Lemma 9 (Best Response) Under assumption A, and provided NDj is binding, there exists a pair

(r∗, α∗), such that for any r ∈ (r∗, 1] and for any α ∈ (0, α∗), a firm i’s best response {sj , ss}c , ∀c ∈ C

satisfies {sj , ss}c = {sj , ss}−c .

Proof. In Appendix.

The proof of Proposition 8 is now nearly complete. We only need to show that there is an r∗ < r̂, so that

Proposition 6 applies. For any r̂, there exists an α low enough such that this is satisfied. It follows from

the proof of Lemma 9 (in appendix, equation (37)) that r∗ is decreasing in α

dr∗

dα
=

Qor∗

Qo(1− r∗) + Qd (r∗+α)(r∗+mα)
(1+r∗)2

> 0

and with α going to zero, r∗ becomes negative since Qo > Qd

lim
α→0

r∗ =
−Qo

Qo −Qd < 0

As a result, there is always an r∗ < r̂. This completes the proof of Proposition 8.

The intuition is that even though the seniors’ continuation payoff is increasing for a decreasing sj , the

incentive constraint ND of the juniors is affected by the change in sj . What the proposition shows is
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the conditions under which a decrease in sj violates the NDj constraint. For sufficiently high r and

sufficiently low α, a decrease in sj decreases vo
j marginally more than a decrease in vd

j , which violates

the ND constraint. Consider vo
j = vd

j binding, then a decrease in sj decreases both vo
j and vd

j . Since vo
j

depends on both r and α, and vd
j only on r, both continuation payoffs have a different marginal effect for

different pairs (r, α).

The behavior by other firms in the market clearly limits a firm to extract authority rents from newly

entering juniors. The best one individual firm can do is extract as much as the other firms. Of course,

there is a continuum of equilibria in this economy: if all other firms extract more from the juniors (i.e.

have a low sj) then an individual firm can extract that much as well. It is important to note that the

equilibrium level of sj , associated with each of these equilibria, affects the equilibrium distribution, and

hence efficiency. Next, we illustrate this result with an example.

4.3 An Example With Increasing Compensation Schedules

Consider the same example as in section 3, where each time, two senior incumbents hire one junior.

Note that assumption A is satisfied, and that the sharing rule satisfies budget balancing: sj + 2ss = 1,.

Utility is given by ui = siQ − e2
i
2 , ∀i ∈ {j, s}. Optimal effort is unchanged eo = 1 and adjusting for the

shares, optimal utility uo
i = si3− 1

2 . Effort for deviating is determined by the first order condition, where

C ′(e) = e implies si = ei. It follows that

ud
i = si(2 + si)−

s2
i
2

= 2si +
s2
i
2

, ∀i ∈ {j, s}

Making use of budget balancing sj + 2ss = 1, we get

ud
j = 2sj +

s2
j

2

ud
s = 1− sj +

(1− sj)
2

8

As before, in firms with a norm of non-cooperation, output is shared equally: e∗ = 1
3 and u∗ = 5

18 . From

equation (11) it follows that ∆ = 3
2

1−3sj
r+3α . Note that for sj = ss = 1

3 , we have the case of symmetric

exogenous sharing rules, and ∆ = 0. From the individual rationality condition (14), ud
j = u∗ it follows

that 2sj +
s2
j
2 = 5

18 , which is satisfied for sj = 0.13. Note that uo = sj3− 1
2 is negative for any sj < 1

6 ≈ 0.17

(at sj = sj , uo
j = −0.097).

We first verify the conditions of Proposition 6:
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1. The junior’s ND is binding

∆ ≥
ud

s − ud
j

r + 1

implies
3
2

1− 3sj

r + 3α
≥ 1

8
9− 26sj − 3s2

j

r + 1

which is satisfied for all the examples we give below. Hence f is derived from (16)

f = 1−

(

2sj +
s2
j
2 − 3sj + 1

2

)

(1 + r) + α3(1−3sj)
r+3α

(

3sj − 1
2

)

(1 + r)− r(2sj +
s2
j
2 )− 5

18 + α3(1−3sj)
r+3α (1 + r)

α
1− α

(18)

2. Limited by the market. From the proof of lemma 9 (in appendix, equation (39)) it follows that the

firm’s schedule is limited by the other firms’ schedules (i.e. the junior share cannot be lower than

in other firms {sj}c ≥ {sj}−c)

3
(

r
(r + α) (r + 3α)

)

>
2 + sj

1 + r

It is easy to verify that this condition holds for r = α = 0.1. And though it does not hold for

r = α = 0.2 over the whole range of sj (in particular near sj = 1
3), it does hold over the whole

range for r = 0.3 and α = 0.1. This implies that when it holds, authority is limited to what the

market offers. Firms cannot offer an sj that is lower than the rest of the firms. If they would, that

would violate the juniors’ ND constraint. When this condition is not satisfied, firms can exercise

unlimited authority by offering the lowest share possible.

Figure 1 plots the distribution f in function of sj from equation (18) for different combinations of r and

α. The junior’s share is bounded above by 1
3 and below by sj = 0.13. The solid line gives equation (18).

Note that in this case, a firm’s schedule is limited by the market, there are multiple equilibria: all shares

sj ∈ [.15, .33], chosen equally by all firms, are equilibria.
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Figure 1: The Share of f in function of sj for r = α = .1.

Below, the different types of equilibrium distributions are illustrated. In figure 2, (as is the case in figure

1), sj is limited. If all firms choose pay a share sj , then the best response for a firm that employs a new

entrant is to offer an identical share sj . Then, no firm will offer a share different than any other firm. If

it would do so, that would violate the junior’s incentive not to deviate. As a result, all outcomes of f

within the feasible range are possible (f ∈ [.42, .94] in part (a) and f ∈ [0, .79] in part (b)). Note also

that in the figure 2(a), f is bounded from below for any feasible sj . The minimum level is at sj = sj ,

where f = .42. For r and α even lower (for example equal to .01), f increases to f = 0.89. As α and r

go to zero, all firms in the limit have a norm of cooperation. On the other hand, as r and α increase, the

equilibrium with heterogeneity in norms eventually does not exist, as in the example for r = α = .4, and

all firms have a norm of non-cooperation.

Figure 3 depicts the opposite case when sj is unlimited by the market. Whatever share sj other firms

offer, senior incumbents increase their continuation payoff vo
s by offering the lowest junior share possible

without violating the NDj constraint. In figure 3(a), it is illustrated that norms of cooperation simply

do not exist (f hits zero before the IR constraint is binding). In figure 3(b), the seniors are constrained

by the IR condition to offer shares above sj . Hence the only equilibrium is one with unlimited authority

but where a fraction of roughly half of the firms has a norm for cooperation.
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(a) f ∈ [.42, .94] for r = α = .05 (b) f ∈ [0, .79] for r = .3, α = .1

Figure 2: sj limited in equilibrium
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(a) f = 0 for r = .1, α = .3 (b) f = .49 for r = .01, α = .1

Figure 3: sj unlimited in equilibrium

4.4 Efficiency

One major question remains: which organizational designs are more efficient? Here, we compare economies

where organizations have a different compensation schedule. The result is that efficiency is higher the

flatter the compensation schedule. That is, the most efficient design is the one with equal sharing rules

sj = ss. This is surprising because without competition (i.e. in the presence of an exogenous outside

option), increasing compensation schedules improves the incentives within the firm. However, in the

presence of competing firms, increasing compensation schedules increase the incentives for deviation. As

a result, more bad norms need to exist in equilibrium in order to sustain cooperation by the juniors in the
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good norms. Obviously, a necessary condition for flat schedules to be more efficient is that junior shares

are limited by the market. If not, there is no equilibrium with flat shares.

The next proposition shows that the conditions that limit sj constitute a sufficient condition for this to

be the case.

Lemma 10 Under assumption A, and provided sj is limited, the fraction f of firms of type c ∈ C is

increasing in sj.

Proof. From equations (9) and (12), it follows that

vo
j =

1
r + α

{

uo
j + α [V + (m− 1)∆]

}

vd
j =

1
r + 1

(

ud
j + V

)

As in Lemma 9 we calculate the effect of changes of sj on the ND constraint. Now, we do not verify for

a unilateral deviation but compare between different equilibria. As a result, we take the effect of sj on V

into account. Then denote the total derivative to take into account the effect on V , then

dvo
j

dsj
≥

dvd
j

dsj
(19)

implies
∂vo

j

∂sj
+

α
r + α

∂V
∂sj

≥
∂vd

j

∂sj
+

1
r + 1

∂V
∂sj

(20)

From Lemma 9 it follows that there exists a pair (r∗, α∗) such that
∂vo

j
∂sj

=
∂vd

j
∂sj

, then it follows that for all

α ∈ [0, α∗]
∂vo

j

∂sj
+

r(α− 1)
(r + α)(r + 1)

∂V
∂sj

>
∂V d

j

∂sj
(21)

since ∂V
∂sj

> 0. It now follows that for the ND constraint to hold with equality for a decrease in sj , p and

hence f have to decrease. This completes the proof.

Proposition 11 Consider the set of equilibria with f good norm firms, and where sj is limited. Then

efficiency is increasing in sj.

Proof. This follows immediately from Lemma 10.

To see this, note that V is a convex combination in f of vo
j and v∗, and V is increasing in sj .

5 Robustness

In this section, we verify whether the results derived are robust to changes in the assumptions. We

consider the introduction of capital in production, renegotiation, and deviations by coalitions.
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5.1 Production with Capital

Consider the model from section 3, with capital, competing for labor. The output production function is

Cobb-Douglas with capital in addition to additively separable effort

y = f (e, k) =
(
∑

ei

)

ka

This represents a situation as before: the firm can announce wages depending on the whole bundle e of

effort choices. Agents and capitalists simultaneously choose effort and capital, respectively. Given an effort

bundle e, a firm hires capital k at a capital rental rate R in order to maximize profits π = y−mw(e)−kR,

where mw(e) is the total wage bill that is paid by the firm, which is shared according to the sharing rule

{si}. This implies the first order condition

aka−1
(
∑

ei

)

= R

The equilibrium level of capital k

k =
(

aQ
R

) 1
1−a

The first order condition for labor is

dw(e)
dei

=
dy
dei

=
d

∑

ei

dei
ka

The increase in the wage for extra effort is equal to the increase in the additional production of output.

As before, we look for equilibria with equal effort supply by all agents within one firm. Then the first

order condition for ei = e, ∀i is
dw(e)

de
= ka

Using (since Q = me)

k =
(ame

R

) 1
1−a

If there is a total amount of capital k in the economy, then the rental rate of capital R is determined

endogenously by equating supply of capital with demand
∫

(ame
R

) 1
1−a d

F (e)
m

= k

which gives R =
(

∫ 1
km

(ame)
1

1−a dF (e)
)1−a

where F (e) is the cumulative distribution of all workers,

with m of them in each firm. We can now substitute

dw(e)
de

=
(ame

R

) a
1−a

which after integration gives the wage schedule (with K the constant of integration)

w(e) = (1− a)
(am

R

) a
1−a e

1
1−a + K
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And substituting for the equilibrium amount of capital k

w(e) = (1− a) eka + C

The total wage bill is mw(e) = m (1− a) eka +mK and payment to capital is equal to ay, so that the zero

profit condition implies that K = 0. The wage bill is a fixed proportion of y : mw(e) = (1− a) y. This

competitive equilibrium implies that capital is efficiently hired, given the firm’s belief about the effort

supply e of the workers. The total wage bill mw(e) = (1− a) meka corresponds to total output available

to the workers as modeled before

Q(e) = (1− a)
(
∑

ei

)

ka

In this setting, capital is proportional to the effort level in the firm and as a result capital yields the same

return in all firms, irrespective of the norm. Capital does not earn a higher return in the firms with a

norm of cooperation. Recent empirical work by Cappelli and Neumark (1999) supports this result. They

report evidence that ”high performance” work practices increase labor productivity. At the same time,

these work practices raise labor cost and employee compensation, while keeping the return on capital

constant. ”High performance” work practices are good for employees and harm nor hurt employers. They

conclude that ”high road” human resources practices do raise employee compensation without affecting

the firm’s (i.e. the capital’s) competitiveness.

5.2 Renegotiation

The equilibrium derived in the former sections is not renegotiation proof. The strategy that supports

equilibrium requires a punishment that involves termination of the entire c firm in the case of a deviation.

Because vo ≥ V , this is not renegotiation proof.

In the former sections, no individual monitoring technology was available. In this section, it is illustrated

how a renegotiation proof equilibrium arises if there is a positive probability that a deviator is detected.

Suppose now that after production, in addition to Q, a worker’s individual effort ei is observed with

probability β ∈ (0, 1].

Consider the same strategy as above, except for the fact that there is no punishment unless the true effort

is observed to be different from eo. The punishment then implies that the match is terminated for the

deviator only. All remaining m − 1 workers continue in the c firm with a newly hired worker replacing

the deviator. The continuation payoff of a deviator in a firm of type c, in the case of no authority (i.e.

sj = ss) then is

rvd = ud + (α + β (1− α))
[

V − vd
]

(22)
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As in Theorem 3 we can derive the condition vo ≥ vd for no deviation, which is a modified version of (29)

uo ≥ γ′ud +
(

1− γ′
)

u∗ (23)

where

γ′ =
r + p + α (1− p)

r + α + β (1− α) + p [1− α− β (1− α)]
(24)

The proportion of cooperating firms now is

f(β) = 1−
(

ud − u∗
)

(r + 1)
uo (r + β)− rud − βu∗

α
1− α

(25)

It can be shown that an equilibrium exists with a fraction f(β) of firms of type c. Note that for f(1), the

outcome is identical to the one in the case of no monitoring. It is easy to show that f(β) is increasing in

β.

The main difference is however that this equilibrium is renegotiation proof. In case of a unilateral

deviation, the deviator is detected (with probability β) while the remaining workers remain in the firm

and continue to cooperate. For them the continuation payoff of punishment is not dominated, and hence

satisfies Farrell and Maskin’s (1989) criterion for renegotiation proofness. This holds for any m > 2.

5.3 Deviations by coalitions

Equilibrium derived here is non-cooperative, in the sense that only deviations by one individual at the time

are considered. Allowing for deviations by coalitions of m workers certainly does change the equilibrium.

In particular, a firm of type d would always gain if all its workers were to coordinate their actions and

start to cooperate (an individual firm has zero mass). However, equilibrium now does not exist. When

all firms are cooperating, an individual will deviate. And we just pointed out that a coalition that does

not cooperate will deviate otherwise. It follows that equilibrium does not exist. Note also that a mixed

strategy by coalitions would be problematic. Given a mixed strategy by all other firms, one firm’s best

response is to cooperate with probability one. Being of zero mass, this does not change the no deviation

constraint of one individual worker. This is a dominant strategy as the payoff from cooperating is higher

than not cooperating.

6 Extensions

We consider three extensions to the model of section 3.
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6.1 Heterogeneous agents

Consider two types θ of agents, h and l and such that, in addition to effort, the agent types are inputs in

production. Types θ are observable. Let firms consist of m = 2 agents. For sorting to matter, let agent

types be complementary inputs: Q = Πθθ
∑

i ei. There is now a productivity gain from matches that

are positively assorted, as for a given level of effort, Q(h, h) + Q(l, l) > 2Q(h, l). In the earlier sections,

rematching is assumed to be frictionless. That implies that any high type can always reject a low type,

and redraw a partner until she gets another high type. We now modify the model slightly and let agents

make one draw from the pool of unmatched per period. Because the value of not being matched to anyone

is normalized to zero, it always pays to remain matched, even if that includes negatively sorted matches

(h, l).

Now, effort choice by high types includes the consideration of ”bad” (h, l) matches, in addition to the

possibility of being in a (h, h) match with a norm for non-cooperation. All high types will immediately

want to separate from a match with a low type implying there is no cooperation in mixed matches. The

difference between h and l, and hence the marginal productivity of effort in different matches is now

crucial in determining equilibrium. With a high difference, all high types will be induced to cooperate

as there is sufficient punishment in the threat of being matched to a type l. So the heterogeneity has an

efficiency gain by inducing all the high types to coordinate. Consider now the low types. They still need

sufficient matches with a norm for non-cooperation in order to credibly sustain cooperation in others.

However, there is also a possibility of being rematched to an exogenously separated high type worker.

The larger the difference between low and high types, the higher the benefit to a low type and the higher

here incentive to try a rematch each time. This will induce her not to cooperate even if she is matched

to another low type, as she wants to try her luck by possibly rematching a high type. While increasing

dispersion in the types provides incentives for the high types to cooperate, it provides incentives for the

low types not to cooperate. The result is that the initial dispersion is exacerbated in the payoffs through

effort choice.

6.2 Complementary Inputs

When inputs are complementary, multiple static Nash equilibria can exist. The marginal productivity

of a worker’s effort increases as effort by other workers in the firm increases. As a result, multiple fixed

points to the static game can exist.17 Suppose there are two pure strategy Nash equilibria with utilities
17Consider an example with m = 3, but where the production function is now multiplicative (i.e. effort is a complementary

input) Q = 3Πiei and cost of effort is c(ei) = e4
i
4 , which implies c′ = e3

i . When output is equally shared, there are two pure

strategy Nash equilibria: e∗ = 1 and e∗ = 0. Then either u∗ = 1
2 or u∗ = 0. The Pareto optimal level of effort is eo = 3,

25



associated u∗ < u∗ such that u∗ < u∗ < uo < ud. Let the corresponding continuation payoffs v∗ and

v∗ be defined as above. To derive the equilibrium distribution of firm norms in this economy, consider

the following expected continuation payoff of being rematched: V = p1vo + p2v∗ + p3v∗ where p1 is the

probability of matching to firm with a norm for cooperation and p1 + p2 + p3 = 1.

An equilibrium distribution will now depend on what the level of effort is in the firms without a norm for

cooperation. The condition (5) will now write uo ≥ γ1u
d + γ2u

∗+ γ3u
∗. If p2 = 0 (and hence γ2 = 0), the

fraction of cooperating firms f where the ND constraint is binding will be smaller than if p2 = 1− p1. In

fact, as p2 is increasing, f is decreasing. The value of being in a firm with a norm for non-cooperation e∗

is the lowest possible, which implies that punishment is sufficiently severe that a large number of firms

with a norm for cooperation can be sustained. In principle, any distribution of between p2 and p3 can be

envisaged, as long as it satisfies the constraint.

Now consider the following case: let v∗ > V. Then a worker in a firm with a norm for non-cooperation

(the higher one of the two), will not want to separate as the current value is higher than the expected

value of rematching. However, even if these non-cooperating stay together, it will not be an equilibrium

to start cooperating if the ND constraint is binding with equality. Hence there is an equilibrium with

three types of norms: high turnover, low non-cooperative effort; low turnover, high non-cooperative effort;

cooperation. We now derive distribution, always under the assumption that v∗ > V .

6.3 Unemployment

The result of the model is surprising because in all periods, agents are productive and can choose their

effort levels. In this section, costly search is introduced: matching is not instantaneously so that a worker,

whose match has terminated, necessarily spends some time without producing output. Now, in addition

to the firm norm, there is unemployment. This is reminiscent of the efficiency wage model as in Shapiro

and Stiglitz (1984). It will now become immediately apparent that this model differs from the efficiency

wage model in three substantial aspects: 1. production involves cooperation between workers in the

Holmström framework; 2. matching is costless18; 3. in the repeated game, histories of outcomes are

implying that uo = 27
4 ≈ 6.75. The utility from deviation is given by ud = 9ei − e4

i
4 , which solves ed = 3

√
9 ≈ 2.08 and yields

ud = 3
49

4
3 ≈ 14.04.

18In the efficiency wage model without costly search, incentive compatibility becomes infinitely costly. To see this, consider

the steady state condition in that model: b(N − L) = aL with the original notation: L is the level of unemployment, N is

the total labor force, a is the job separation rate and b is the arrival rate of jobs. Without costly search, the arrival rate

of a job a = ∞ which implies there is no punishment device. From the steady state condition it follows that there is full

employment (as in our model): L = N. The only wage that can sustain positive effort is w = ∞. Since that is not feasible

(firms make losses: π = f(L)−∞ < 0), the equilibrium without frictions is w = 0 and e = 0.
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observed within the existing matches, and the firm norm serves as a public randomization device.

We now extend our model to include costly search in the matching process. Matches arrive at a rate

λ ∈ [0,∞). The implication is that a worker whose match has terminated, now has to spend some

time without a positive flow of utility (unemployment benefits are normalized to zero). Let z be the

continuation payoff of unemployment:

ru = λ (V − u) (26)

where V is the expected continuation payoff of a future match. Note that for λ →∞ frictions disappear

and z = V . As before, we consider firms of type c where a worker has a continuation payoff vo and firms

of type d with v∗. The continuation payoffs satisfy:

rv∗ = u∗ + αz + λV − (α + λ)z∗

rvo = uo + α(z − vo)

rvd = ud +
(

z − vd
)

We can now rewrite the no deviation constraint ND as

uo ≥ α + r
1 + r

ud +
r(1− α)

1 + r
z (27)

≥ α + r
1 + r

ud +
r(1− α)

1 + r
λV

r + λ

The difference between the ND constraint here with the model without frictions is in the term λ
λ+r (see

equation (6) above), which is equal to 1 for λ →∞, i.e. immediate arrival of jobs (or no frictions).

Steady state implies that the total flow out of unemployment is equal to the total flow into unemployment

λ#z = α(1−#z) (where #z is the measure of unemployed) and that the flow into good jobs is equal to

the flow out of good jobs: λ(1−f) = αf. Note that this may give rise to an equilibrium where f = 1−#u:

since the bad firm types immediately change to a good firm when they get the opportunity, equilibrium

implies there are only good firms. However, this is only true if the (ND) constraint is satisfied. Note

that the proportion of good firms in general is

p =
αf

1− f −#z + αf

Consider the extreme case where only firms with a norm of cooperation exist. Then f = 1 −#z, p = 1

and V = vo. The ND constraint now reduces to

uo ≥ α + r
1 + r

ud +
(1− α)λ

(1 + r) (r + α + λ)
uo (28)
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For a rate of attrition α, there exists a critical λ for which this equation is satisfied with equality. For a

given pair (r, α), let λ satisfy uo = α+r
1+r ud+ (1−α)λ

(1+r)(r+α+λ)u
o. Then since d

dλ
(1−α)λ

(1+r)(r+α+λ) = (1−α)(r+α)
(1+r)(r+α+λ)2

> 0,

the ND constraint is violated ∀λ > λ. The implication is that only equilibria can exist where V < vo,

which is only satisfied for p < 1 since V = pvo +(1−p)v∗. It follows that f < 1−#z and that the fraction

of firms with a norm for non cooperation is 1 − f −#z > 0. Moreover, the fraction of high cooperation

firms is constant, while the fraction of low cooperation firms is strictly increasing in λ. When λ → ∞,

u = 0 and the fraction of low norm firms is 1 − f , as in the competing norms model with frictionless

matching. As an example, the consider the production technology as above with m = 10, then ud = 0.93.

Let r = 0.1 and α = 0.3. The lower bound λ then solves the equation (28) which implies λ = 0.41. For

any λ > 0.41, the equilibrium necessarily involves some degree of inequality of firm norms.

7 Concluding Remarks

The theory of competing norms provides an explanation for the persisting differences in organizational

design: norms that are bad for its members do not disappear because they affect incentives within good

norm firms. Moreover, compensation schedules are shaped by the market and the schedules adopted in

other firms. The fundamental implication for efficiency is that flat compensation schedules within firms,

combined with heterogeneity between firms generates highest aggregate welfare.

In a different economic environment, the competing norms model may provide the parallel to Tiebout’s

theory of local public goods, even for identical agents. The social capital associated with the norm can

be interpreted as a local public good. In Tiebout’s model, heterogeneous citizens move between different

neighborhoods (by ”voting with their feet”) and sort themselves into homogeneous communities in order

to provide the local public good (e.g. education). As a result, heterogeneity between neighborhoods

increases. What the theory of competing norms shows, is that even with identical citizens and with

sufficient mobility, neighborhoods will have different degrees of contribution to the public good, as long

as the contribution cannot be contracted upon ex ante. The low contribution neighborhoods will exhibit

a high rate of turnover.
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8 Appendix

Proof of Proposition 2

Proof. If there is no cooperation in none of the firms, then the continuation payoff in all firms is v∗. Since

all firms are identical, the expected continuation payoff of a future match is V = V ∗. As a result, the agent

chooses ei to maximize rv∗ = maxei

{

si
(

Q(ei, e∗−i)
)

− c(ei)
}

, the solution of which by definition of the

static Nash equilibrium is ei = e∗i . Because all agents in all firms are indifferent between rematching and

remain matched to the current partner (V = v∗), an equilibrium may involve any termination strategy,

i.e. with any probability ∈ [0, 1].

Proof of Theorem 3

Proof. Consider the strategy described above. The continuation values are given by equations (2), (3),

(4). Substituting for V = pvo + (1− p)v∗ implies

rvo = uo + α (1− p) [v∗ − vo]

rvd = ud + (1− p)
[

v∗ − vd
]

rv∗ = u∗ + p [vo − v∗]

We can now rewrite the no deviation constraint (5) which implies

uo ≥ γud + (1− γ) u∗ (29)

where

γ =
r + p + α (1− p)

r + 1
(30)

It is easy to verify that vo ≥ v∗ so that no agent who has cooperated wants to terminate the match when

Q(e) = Q(eo). So no agent in a firm c wants to deviate if condition (29) is satisfied.

We now verify deviations by agents in firms of type d. Suppose she chooses a level of effort e 6= e∗, then by

definition of Nash equilibrium, her utility u(ei, e∗−i) < u∗. Given the termination strategy of her partners,

she will be separated with probability 1, thus giving her the expected continuation payoff V . As a result,

her continuation payoff from choosing e 6= e∗ is lower than v∗. Given the termination strategy of all other

agents in a type d firm, her termination strategy does not affect her payoff. Note however that a strategy

where all players in a d firm choose not to terminate cannot be an equilibrium. Suppose it were, then

deviating by termination yields a continuation payoff V ≥ v∗ (from vo ≥ v∗ and given that V is a convex

combination of vo and v∗).
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It now suffices to demonstrate the existence of a non negative pair (r, α) such that condition (29) is

satisfied. To establish (29) we can choose an r and α to satisfy (29) with equality. To see this is possible,

note that limr→0 (limα→0 γ) = 0 and limr→1 (limα→1 γ) = 1, and that dγ
dα > 0 and dγ

dr > 0, making

use of equation (7). Since by definition, uo, u∗,and ud satisfy ud ≥ uo ≥ u∗, we choose (r, α) so that

uo = γud + (1− γ) u∗. This is satisfied with equality for F (c) = f . Now, for a given (r, α) < (r, α) , the

ND constraint is satisfied. Using (7) and (30) to substitute at the ND constraint (29), yields equation

(8). This completes the proof.

Proof of Lemma 5

Given that the incentive compatibility constraint is binding, IR requires that vo
j = vd

j ≥ V ∗. From

equations (12) and (4), IR then implies

ud
j + V
1 + r

≥ u∗ + V
1 + r

and hence ud
j ≥ u∗. Where the IR constraint is binding, ud

j = u∗ can be rewritten as sj
(

Qd
)

−C(ed
j ) = u∗,

where sj is the the minimal sj . This is a lower bound because ud
j is increasing in sj .

Proof of Proposition 6

To prove this Proposition, we proceed by showing two Lemmata. In Lemma 12, for a given sharing rule

{sj , ss}, common to all firms, we derive the equivalent distribution function as in Theorem 3. As in

Theorem 3 we can verify that we only have to make sure no deviations are made by workers (both junior

and senior) in c firms (as before, no one in a d firm wants to deviate from e = e∗ nor the the separation

strategy, and no worker in the c firm wants to deviate by early termination. In Lemma 13, assumption A

allows us to determine that NDj is binding, and we show existence.

Lemma 12 For any given sharing rule {sj , ss}c, ∀c ∈ C the fraction f1 of firms with a norm for cooper-

ation, is given by

f1 = 1−

(

ud
j − uo

j

)

(r + 1) + α(m− 1)∆

uo
j (r + 1)− rud

j − u∗j + α(m− 1)(1 + r)∆
α

1− α
(31)

provided
uo

s−uo
j

r+mα ≥ ud
s−ud

j
r+1 and provided equilibrium exists.

Proof. Consider the same strategies as in Theorem 3. Then the proportion p of c firms is given by

equation (7). The expected continuation payoff of rematching is now V = pvo
j + (1− p)v∗. Substituting
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V in equations (9), (12) and (4), using (11) implies

rvo
j = uo

j + α
[

(1− p)
(

v∗ − vo
j
)

+ (m− 1)∆
]

rvd
j = ud

j + (1− p)
[

v∗ − vd
j

]

rv∗ = u∗ + p
[

vo
j − v∗

]

No deviation by the junior requires vo
j ≥ vd

j (NDj), implies:

uo
j + α(m− 1)∆ ≥ ud

jγ + u∗ (1− γ) (32)

where γ is as before and given by equation (30).

The continuation payoffs for the senior workers can be rewritten in a similar way: rvo
s = α [(1− p) (v∗ − vo

s)− p∆] .

We then get a parallel condition NDs for the senior workers derived from vo
s ≥ vd

s

uo
s + p(1− α)∆ ≥ ud

sγ + u∗ (1− γ) (33)

Both NDj and NDs need be satisfied. To determine which one of the two is binding, consider

vo
j ≥ vd

j

vo
s ≥ vd

s

Now given the definition of ∆ = vo
s − vo

j , we can write NDs as

vo
j + ∆ ≥ vd

j +
ud

s − ud
j

r + 1

since

vd
s − vd

j =
ud

s − ud
j

r + 1
> 0

This implies that NDj is binding iff ∆ ≥ ud
s−ud

j
r+1 and NDs if ∆ ≤ ud

s−ud
j

r+1 (note that both are binding at

sj = ss : then ∆ = 0 and ud
s = ud

j ). From the definition of ∆

NDj binding ⇔
uo

s − uo
j

r + mα
≥

ud
s − ud

j

r + 1
(34)

Assuming existence of a non degenerate distribution, we now proceed as in the proof of Theorem 3 by

calculating the distribution. If (34) holds, from (32) (holding with equality), we can calculate f1 which

gives (16). This completes the proof.

In the following Lemma, we make use of assumption A in order to determine when NDj is binding.
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Lemma 13 Under assumption A, and for any sharing rule {sj , ss}, with sj ∈ [sj , ss], there exists a pair

(r1, α1) such that for any r ∈ (0, r̃], and for any α ∈ (0, α̃], NDj is binding.

Proof. We show that uo
s−uo

j ≥ ud
s−ud

j . The left hand side can be written as ss(Qo)−sj(Qo). The right

hand side is ss(Qd
s) − sj(Qd

j ) −
[

C(ed
s)− C(ed

j )
]

. For any sj ≤ ss, and given A, it follows that ed
j ≤ ed

s

(from ∂u
∂ei

= siQe − c′(ei) = 0, and c convex the envelope theorem implies that ∂ei
∂si

< 0) and as a result,

Qd
s ≥ Qd

j . Since Qo > Qd, it immediately follows that uo
s − uo

j ≥ ud
s − ud

j .

For a finite m, there always exists a pair (r, α) small enough such that equation (34) is satisfied. To

see this, for any r, let α ≤ 1
m , which is sufficient. Then let (r1, α1) be chosen such that (34) holds with

equality. From Lemma 12, it follows that the binding constraint is NDj .

We can now finalize the proof of Proposition 6 and derive the distribution f . As in theorem 3, there

exists a pair (r, α) such that (32) holds with equality. To see this, note that limr→0 limα→0 α(m −

1)∆ = m−1
m

(

uo
s − uo

j

)

so that in the limit, the left hand side of NDj in equation (32) is equal to

uo
j + m−1

m

(

uo
s − uo

j

)

= 1
mQo − c(eo) > u∗. Choose (r2, α2) to satisfy (32) with equality. Let (r̂, α̂) =

min {(r1, α1), (r2, α2)} .Then, under assumption A, Lemma 13 holds, so that from Lemma 12, it follows

that f = f1

f = 1−

(

ud
j − uo

j

)

(r + 1) + α(m− 1)∆

uo
j (r + 1)− rud

j − u∗j + α(m− 1)(1 + r)∆
α

1− α
(35)

This completes the proof of Proposition 6.

Proof of Lemma 9

Proof. The constraint NDj binding implies, from equation (13) that vo
j = vd

j . From equations (9) and

(12) it follows that

vo
j =

1
r + α

{

uo
j + α [V + (m− 1)∆]

}

vd
j =

1
r + 1

(

ud
j + V

)

The problem of the senior is to choose sj (and as a result ss, from budget balancing) in order to maximize

vo
s subject to NDj

maxsj vo
s

s.t. vo
j ≥ vd

j

Since vo
s is always increasing for decreasing sj (from Lemma 7) it suffices to verify whether for a lower sj

the NDj constraint is still binding, i.e. whether

∂vo
j

∂sj
≤

∂vd
j

∂sj
(36)
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A unilateral deviation requires the effect on V is ignored, this then implies, using assumption A:

Qo

r + α

(

1− mα
(r + mα)

)

≤ Qd

1 + r
(37)

We now show that there exists a pair (r∗, α∗) for which equation (36) holds with equality. To see this,

we consider two extreme points. At r = 0, equation (36) holds with strict inequality for any α > 0, since

limr→0
Qo

r+α

(

1− mα
(r+mα)

)

= 0

limr→0
Qd

1+r = Qd > 0

At r = 1, the inequality is violated if

Qo 1
(1 + α) (1 + mα)

>
Qd

2
(38)

which is the case for all α ∈ (0, α∗), where α∗ solves equation (38) with equality (note that the left

hand side is monotonically decreasing in α and goes to zero as α goes to infinity). It now follows that,

provided α < α∗ there exists an r∗ such that equation (37) holds with equality, since ∀r ∈ (0, 1), d
dr

∂vo
j

∂sj
=

Qo 1−r
(1+α)(1+mα) > 0 and d

dr
∂vd

j
∂sj

< 0.

For any pair (r, α) such that r ∈ (r∗, 1] and α ∈ (0, α∗), the NDj constraint satisfies

∂vo
j

∂sj
>

∂vd
j

∂sj
(39)

A decrease in sj implies a higher marginal effect on vo
j than on vd

j . Given that NDj is binding for the

strategy {sj , ss}−c by all other norms −c ∈ C, it follows that vo
j = vd

j , for {sj , ss}c = {sj , ss}−c. Equation

(39) implies that vo
j < vd

j for {sj}c < {sj}−c implying that the best response is {sj , ss}c = {sj , ss}−c .

This completes the proof of the Lemma.
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