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1 Introduction

We consider decentralized trade in a frictional labor market with differentiated firms and

workers. As in the directed search literature [e.g. Montgomery (1991), Peters (1991),

Acemoglu and Shimer (1999a,b), Moen (1997), Lagos (2000), Burdett, Shi and Wright

(2000)], firms advertise their vacancies in some central location - say “help wanted” ads in

newspapers - and all job seekers observe those job advertisements and choose which firm to

apply to. But an important question here is what should a firm’s advertisement state? For

example the firm might advertise a wage, realizing that a higher wage will attract a better

pool of job applicants. But suppose several workers apply. How will the firm then choose

the successful applicant? The directed search approach typically assumes the firm will

randomly select one worker from the pool of applicants. But with heterogeneous workers

this rule is obviously inefficient. Alternatively, it might be more profitable to advertise

a job auction with some reserve price. Not only would such an auction ensure the most

profitable [quality adjusted] worker is hired, it would also maximize firm surplus ex-post

[see Shimer (1999) for example]. However in the world considered here, where firm and

worker types are complementary inputs (i.e. the match value function is supermodular),

each firm wishes to attract a more highly skilled worker. This creates a tension between

maximizing ex-post surplus and attracting a pool of highly skilled job applicants. It turns

out that ex-ante job auctions are too aggressive. Instead, in an effort to attract more

highly skilled job applicants, an optimal equilibrium advertisement essentially implies a

fixed wage rule (that attracts sufficient high skilled workers) and a promise that the firm

will select the most skilled worker from the pool of applicants.

A second question is how the decentralized market can allocate workers to firms? The

directed search literature (with identical workers) finds there is a coordination problem

where several workers might apply for the same job, while some firms receive no applicants.

Conversely, with differentiated firms and workers and complementary inputs, the literature

on assignment problems establishes that positive assortative matching [that the best firm

matches with the best worker, and so on] is the socially efficient outcome [see Roth and

Sotomayor (1990) for a useful survey]. But the so-called assignment game does not explain

how trading prices might be determined in a decentralized, frictional market environment.1

1The notable exception being Shimer and Smith (2000) who consider a search model with two-sided
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This paper shows that in this latter case, where firms and workers are fully differentiated

[the distribution of types being common knowledge], and where firms compete in direct

mechanisms, equilibrium implies both positive assortative matching and trading prices

which are consistent with a ‘stable outcome’. The underlying insight being that worker

heterogeneity and competition in direct mechanisms solves the ‘coordination problem’

described in the directed search framework.

But the equilibrium advertisement is not a job auction. Unlike the competing auction

literature where match values are idiosyncratic and considered as independent random

draws from some exogenous distribution,2 here workers and firms are ex-ante heteroge-

neous, where the distribution of types is common knowledge. Most importantly, with

complementary inputs, firms wish to attract relatively highly skilled workers. Of course,

an efficient mechanism will ensure that the most skilled worker that applies gets the job,

but the equilibrium terms of trade are not determined by the bid of the next best quali-

fied worker in the pool of job applicants. The following example demonstrates this point

intuitively. The paper proves it formally assuming firms compete for job applicants using

direct mechanisms.

1.1 Why Auctions are not Optimal : An Example

Consider a labor market where there is a unit mass of heterogeneous firms, whose type

y is uniformly distributed over the interval [0,1], and a unit mass of workers with type x

uniformly distributed over [0,1]. Assume that if a firm y matches with a worker x, the

value of their match is Q(x, y) = xy, and that a firm or a worker obtain a zero payoff

if they fail to match. If u∗(x), π∗(y) describe their respective equilibrium payoffs in the

assignment game, a stable matching allocation requires

π∗(y) = max
x

[Q(x, y)− u∗(x)]

which says that given the (reservation) equilibrium payoff of workers, firm y hires that

worker which maximises firm surplus. As we have strictly complementary inputs [or

supermodularity, i.e Qxy > 0], it is well known that the unique ‘stable outcome’ implies

heterogeneity and Nash bargaining. They derive conditions under which assortative matching arises.
2See McAfee (1993), Peters (1991), Peters and Severinov (1997), Burguet and Sakovics (1999) for

example, where related work in a common values environment includes Biais et al. (1999)
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positive assortative matching, which in this case implies firm y hires worker x = y. Further,

the equation above and the Envelope Theorem imply

dπ∗

dy
=

∂Q
∂y

(x, y).

As x = y in the equilibrium allocation, this now implies the differential equation dπ∗
dy = y.

Further Q(0, 0) = 0 and non-negative payoffs imply the unique solution π∗(y) = 1
2y

2.

It now follows that the unique equilibrium is that firm y hires worker x = y at wage

u∗(x) = 1
2x

2.

However suppose now that the terms of trade are determined non-cooperatively. In par-

ticular, when firms act strategically, profit maximization suggests each firm will not offer

more than the value of their employee’s outside option. So what is a worker’s outside op-

tion? Suppose positive assortative matching y = x describes the equilibrium allocation,

but that worker x′ deviates from the equilibrium allocation by applying to firm y 6= x′?

To evaluate the worker’s payoff in this state, we need to know what a firm does when two

workers apply for the same job. The natural guess is that the firm should use an (effi-

cient) job auction. In that case, should worker x′ deviate by visiting a more productive

firm, y > x′, she loses the job auction to the other job candidate x = y (who is more

productive) and so obtains a payoff of zero. Conversely, if worker x′ visits a less produc-

tive firm, y < x′, she will win the job auction against the other job applicant x = y, but

the terms of trade are determined by the bid of that competing worker. As the workers’

outside option is to remain unemployed (given the friction that within the same period

no worker can visit another firm), then the less productive worker x = y will offer full

surplus Q(y, y) as his equilibrium bid [the value of his outside option being zero]. Hence

worker x′’s optimal winning bid implies a net payoff of w = Q(x′, y) − Q(y, y). Should

firms compete using job auctions, the presumed equilibrium allocation x = y implies the

value of each worker’s outside option is therefore

u0(x) = max
y≤x

[Q(x, y)−Q(y, y)].

For the case Q = xy, this implies u0(x) = 1
4x

2. Anticipating that firms will only match the

value of a worker’s outside option in equilibrium, suppose u0(x) describes the equilibrium

payoff of workers. Then firm y would like to hire worker x′ where

x′ = arg max
x

[Q(x, y)− u0(x)].
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Given Q = xy and u0(x) = 1
4x

2, then any firm y < 1
2 is best off attracting worker x′ = 2y

at wage w = u0(x′) = y2.

The point is that if the terms of trade are determined by job auctions, each firm will

attempt to poach a more productive worker, rather than hire their ‘designated’ worker

x = y under the efficient allocation.3 A firm can do so because of the friction: once

workers have applied to a firm, they cannot visit another firm. And so what is the a

strategy firm y may use which will attract worker x′ = 2y at wage y2 [assuming all other

firms use job auctions]? Clearly advertising a job auction potentially creates too much

wage competition from a lesser skilled job applicant. Instead, the firm might advertise a

fixed wage w = y2, and state that in case several applicants apply, it will allocate the job

at that wage to the highest skilled worker. As workers with skill x > 2y will not apply [the

value of their outside option u0(x) > y2], worker x′ = 2y anticipates successfully applying

for this job which matches his current payoff u0(x′). In particular, by precommiting not

to maximize ex-post surplus, the firm is potentially able to attract this more productive

worker and so increase profit.4 Considering equilibrium trade with a finite number of

traders where firms compete in direct mechanisms, this paper formally establishes that

the above insight is appropriate: firms do not use job auctions and instead precommit

to some fixed wage rule. The conclusion provides an intuitive interpretation for the final

equilibrium outcome.

Most of the paper focusses on the two firm, two worker case. Section 2 outlines the basic

model structure and section 3 describes optimal direct mechanisms. Section 4 considers a

Nash equilibrium when workers are heterogeneous but firms are identical. It shows that

multiple equilibria are possible, but once attention is restricted to truthful strategies [in

the sense of Bernheim and Whinston (1986a,b)] equilibrium implies a unique set of prices.

Section 5 then supposes both workers and firms are heterogeneous and shows that if the

match value function is strictly supermodular, the (unique) truthful equilibrium implies

positive assortative matching and payoffs are consistent with a stable outcome. Section

6 then generalises this last result to the N firm, N worker case.
3This statement holds for any Q which is strictly supermodular.
4Though in this example, it is assumed that worker type is observed, we show that this holds even

under anonymity. In equilibrium, sellers have the incentive to use ex ante mechanisms which are ex-post

less aggressive than pure auctions.
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2 The Model

Consider a labor market with two firms and two workers. Each firm has one vacancy

and each worker holds one unit of indivisible labour. The workers are heterogeneous and

indexed by a type x ∈ X = {H, L}. The section that follows assumes firms are identical

and for now are indexed by y ∈ Y = {1, 2}. For any matched pair (x, y) ∈ X × Y, the

output generated is described by a production function Q : X ×Y →R+. Given identical

firms, let Q(H, y) = QH , Q(L, y) = QL where QH > QL > 0. X ,Y and Q are common

knowledge, but the workers are anonymous.

Matching is determined by a two-stage game where firms compete in direct mechanisms.

In the first stage of the game, the firms simultaneously post advertisements which describe

their job (i.e. describe their type y) and a wage/job allocation mechanism. These mech-

anisms are described further below. However, as in the directed search literature, these

posted mechanisms are assumed to be enforceable. For example, if a job advertisement

states that the worker hired will be paid a certain wage, then any worker who is hired

must be able to enforce that wage in a court of law. Otherwise such advertisements have

no content and wages should then be determined by ex-post bargaining.

Both workers costlessly observe the posted vacancies and given the advertised ‘mecha-

nisms’, each worker chooses simultaneously which firm to visit. Given those decisions,

and prior to the mechanism being played, each worker observes whether the other worker

has made the same choice or not. At this stage a worker can choose to walk away and so

realize a payoff of zero, but cannot visit the other firm. Given any workers who remain,

the firm’s advertised mechanism is then played and determines the final payoffs; i.e. the

job is allocated and all sidepayments are made according to the advertised mechanism.

All agents are risk neutral, expected utility maximizers. If worker x gets job y and receives

a wage w, the worker obtains utility w and the firm obtains profits Q(x, y)− w from the

transaction. The firm obtains zero profits in case the vacancy remains unfilled.

3 An Optimal Direct Mechanism

Clearly, if a worker’s type were verifiable, the firm’s optimal advertisement would describe

who it would hire and at what wage, depending on the worker type that applies for the
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job. However, to preserve anonymity we shall assume such information is not verifiable.5

It turns out that this assumption is not important - in equilibrium, the advertised mech-

anisms will imply the workers’ visit decisions fully reveal their type. We shall return to

this issue in the conclusion.

Given workers are anonymous and that their type is not verifiable, each firm is restricted

to posting a direct mechanism. Such a mechanism invites any workers who apply to state

simultaneously their type m ∈ {L, H}. Depending on those “messages”, the mechanism

then describes what contracts are offered. Of course allowing workers to walk away prior

to the mechanism being played implies no worker obtains a negative (expected) payoff.

We assume that the number of workers who apply for the job is verifiable, and so the

mechanism can condition on that number. Again, in equilibrium it turns out that this

assumption plays no important role but helps simplify the analysis. We now consider the

optimal mechanism for each case.

3.1 The Optimal Mechanism if only one worker applies.

In this case, the (single) applicant x reports a type m ∈ {L,H} and conditional on m,

the mechanism states which contract this applicant is offered. As we have only two types

of workers, we can focus on just two types of possible contracts. Given m, the firm either

offers

(a) a flat wage contract; the worker is paid a fixed wage w and the firm’s payoff is then

Qx − w, or

(b) a pure profit contract; the worker pays the firm some fixed amount π and retains the

residual value of output Qx − π,
5Note that the anonymity assumption is not specific to the case of heterogeneous workers studied in

this paper. Implicit in the literature on directed search (Montgomery (1991), Lagos (2000), Burdett,

Shi and Wright (2000),...) is the assumption that firms cannot condition the allocation procedure on

the name of the applicant, which in the case of identical agents necessarily results in the firm randomly

allocating across applicants.
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where an intermediate case would be a profit sharing contract.6 By choosing w, π appro-

priately, it is straightforward to design a fully revealing mechanism. For example, suppose

a worker reporting m = L is offered the flat wage contract w, while a worker reporting

m = H is offered the pure profit contract with fixed fee π. Self-selection is guaranteed if

(w, π) satisfy

QL − π < w < QH − π,

as applicant x then obtains greatest utility by reporting m = x.

Of course rather than using a separating mechanism, it may be optimal to offer a pooling

mechanism, say offer only a pure profit contract with fixed fee π. In fact, we shall find that

equilibrium implies worker search is always perfectly directed, where each firm obtains

exactly one applicant. Furthermore, as the workers’ search decisions are fully revealing,

this will imply that each firm ‘knows’ the worker’s type when it receives one applicant.

Hence in equilibrium there will be no efficiency gain to using a separating mechanism

when only one worker applies. Anticipating that result, we simplify the exposition by

assuming each firm offers a ‘pooling’ mechanism. In particular, with only a small loss

of generality, assume a firm offers a pure profit contract with fixed fee π when only one

worker applies. Note that at this stage, this is consistent with a procurement auction,

where π might be interpreted as the firm’s reserve price.

3.2 The Optimal Mechanism if two workers apply.

Again, a direct mechanism requires that each applicant x reports a type m ∈ X ={L,H}.
This time with two applicants, a direct mechanism specifies a message game Γ (X × X , u (·)),
where each participant simultaneously announces a message m ∈ X , and conditional on

those messages, an allocation rule and sidepayments imply an outcome function u (·) :

X × X → R+ × R+.

Now fix arbitrary values uL, uH ≥ 0. Suppose the firm wishes to construct a direct mech-

anism which implies the workers obtain expected payoffs uL, uH respectively should both

apply for the job [where the assumption that either worker can walk away before the

mechanism is played restricts these payoffs to being non-negative]. Obviously such a
6More generally, a worker sending message m might be given a profit sharing contract (αm, βm) where

a worker of type x who reports message m obtains contracted payoff αm + βmQx.
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mechanism needs to be incentive compatible. But we should be most interested in an

efficient direct mechanism - one that ensures the more productive worker gets the job. If

such a mechanism also implements the (given) expected utilities uL, uH ≥ 0, then it must

be optimal: it not only maximises joint rents, it also extracts maximal surplus [given the

chosen (advertised) payoffs uL, uH ]. The following establishes that such a direct mech-

anism exists for any uL, uH ≥ 0. Given that, the advertising game will then determine

uL, uH .

(A1)-(A3) describe a set of (anonymous) allocation rules which induce truth-telling as an

iterated dominant strategy equilibrium and implement any [given] payoffs uL, uH ≥ 0.

(A1) If both workers report m = H, the firm chooses one worker with equal probability

and offers that worker a pure profit contract with fee π = 1
2

(

QL + QH
)

− 2uL. In

this event, worker H obtains expected payoff a = uL + 1
4 [Q

H−QL] > uL and worker

L obtains expected payoff b = uL − 1
4 [Q

H −QL] < uL.

(A2) If both workers report message m = L, the job is not filled and both workers obtain

a payoff of zero.

(A3) If one worker reports H, the other L, the worker reporting m = L is given sidepay-

ment uL, while the worker reporting H is given the job and a pure profit contract

with fee π = QH− uH .

These rules imply a message game with the following normal form [where worker H plays

rows (and receives the first number in the pay-off pair) and worker L plays columns].

mH

mL

H L

H (a, b) (uH , uL)

L (uL, QL − [QH − uH ]) (0, 0)

Although these allocation rules respect anonymity, the use of pure profit contracts implies

payoffs are not symmetric. Indeed, as allocation rule (A1) implies a > uL, then for

uH > 0, worker H ′s strict dominant strategy is to report mH = H.7 Further, as (A1)

also implies b < uL, worker L′s (iterated) dominant strategy is to report mL = L. Hence
7All equilibria described below imply uH > 0. Of course, uH = 0 implies only weak dominance.
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allocation rules (A1)-(A3) imply that truth telling is incentive compatible. Further as the

equilibrium message strategies imply truth-telling, rule (A3) then allocates the job to the

most productive worker and implements the (advertised) payoffs uH , uL ≥ 0. Hence this

mechanism maximises the firm’s surplus [given uH , uL] and so is optimal.

More intuitively, note that these rules induce truth-telling by giving a flat sidepayment to

any worker reporting m = L, and randomly allocates a pure profit contract to any worker

reporting m = H, where the job fee depends on how many report m = H. By efficiently

separating the workers in this way, the firm obtains expected payoff QH − uH − uL.

For the remainder of the paper, attention is restricted to direct mechanisms of this form

and as a result, the only payoff relevant variables when two workers apply are the firm’s

advertised choice of uL, uH ≥ 0. In reduced form, the firm’s advertisement is considered

as a triple (π, uL, uH) where π is the firm’s fee in a pure profit contract should one worker

apply, while should both apply the workers obtain (uL, uH) respectively and the firm

obtains payoff QH − uL − uH .

4 A Nash Equilibrium in Direct Mechanisms

The previous section implies each firm’s optimal direct mechanism reduces to a triple

(π, uH , uL). This section now characterises a (perfect) Nash equilibrium to the two stage

game described above. We shall let (π′, u′L, u′H) denote the job advert posted by firm 1,

and (π, uL, uH) denote the advert posted by firm 2. Throughout we shall only consider

equilibria where firms play pure strategies. Given those posted adverts, let σx, x ∈ {L,H},
denote the probability that worker x visits firm 1. We can now define an equilibrium.

Definition 1 A (perfect) Nash equilibrium is a sextuple (π, uL, uH , π′, u′L, u′H) and a pair

(σH , σL) where

(a) given (π, uL, uH , π′, u′L, u′H), then (σH , σL) describes a Nash equilibrium in visit strate-

gies, and

(b) given those subgame visit strategies (σH , σL), (π′, u′L, u′H) and (π, uL, uH) describe a

Nash equilibrium in pure advertising strategies.

10



Before characterising such equilibria, it is worth quickly explaining the qualitative differ-

ence implied by this mechanism approach. Typically the directed search approach assumes

workers are equally productive [QH = QL = Q] and that firms post a single price, a wage

w. This is a special case of the above with π = Q − w and uH = uL = 1
2w. As such

a ‘mechanism’ treats the workers equally, there is a co-ordination problem where each

worker does not know which firm the other worker will visit. A symmetric equilibrium

finds that workers randomise on their visit strategies.

But with heterogeneous workers and direct mechanisms, firms can post a price triple

(π, uL, uH) which treats the differently skilled workers unequally [even though the job al-

location rules respect anonymity]. Somewhat surprisingly, this richer pricing strategy and

equilibrium results in perfectly directed search despite anonymity; there is no coordination

problem with heterogeneous workers.

To see this, suppose for simplicity that both firms announce π, π′ ≤ QL. Standard algebra8

shows that in any subgame with randomised visiting strategies σL, σH ∈ (0, 1) :

σH =
uL + π′ −QL

u′L + uL + π′ + π − 2QL (1)

σL =
uH + π′ −QH

u′H + uH + π′ + π − 2QH . (2)

Also note that firm 1’s expected payoff is

Π1 = [σL(1− σH) + σH(1− σL)] π′ + σLσH
[

QH − u′H − u′L
]

,

where σL(1− σH) + σH(1− σL) is the probability that exactly one worker applies for the

job (and the firm obtains payoff π′ ≤ QL) and σLσH is the probability that both apply.

Now consider firm 1’s best response, given firm 2 uses some (pure) price strategy (π, uL, uH).

In particular, suppose that the best response of firm 1 implies both workers randomise.

Given that, we can use (1) and (2) to substitute out u′L and u′H in the above equation for
8Given σL, worker H is indifferent to visiting firms 1 and 2 if and only if

(1− σL)
(

QH − π′
)

+ σLu′H = σL
(

QH − π
)

+ (1− σL)uH

where the LHS is the expected payoff to visiting firm 1, and the RHS is the expected payoff to visiting

firm 2. Re-arranging implies (2). (1) is obtained in the same way [and is symmetric].
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Π1. Simplifying implies the reduced form profit function for firm 1 is

˜Π1(σL, σH) = σL
[

QL − uL
]

+ σH
[

QH − uH
]

− σLσH
[

QH + 2QL − uH − uL − 2π
]

(3)

Given firm 2’s price strategy (π, uL, uH), this reduced form profit function describes firm

1’s payoff as a function of the visit strategies (σH , σL), where those probabilities are

determined by firm 1’s choice of prices and (1), (2).

Lemma 2 Given (σL, σH) ∈ [0, 1] × [0, 1], then ˜Π1 defined by (3) is a maximum at one

of the corners where σL, σH ∈ {0, 1}.

Proof. Given any σH ∈ [0, 1], notice that ˜Π1 is linear in σL. Hence for any such σH , ˜Π1

is a maximum at σL = 0 or 1. Now fix σL = 0 or 1. ˜Π1 is now a linear function of σH and

hence a maximum occurs at σH = 0 or 1. This completes the proof of the lemma.

Lemma 1 implies that an equilibrium does not exist where [along the equilibrium path]

both workers randomise on which firm to visit. In particular given firm 2’s price strategy,

a best response by firm 1 implies σx is either zero or one; i.e. neither worker randomises in

the subgame. The following shows how firm 1’s choice of (π′, u′L, u′H) does this. But this

result is strikingly different to the coordination failure considered in the standard directed

search approach. There with identical workers and σH = σL = σ, the above reduced form

profit function ˜Π1 becomes a quadratic in σ. Further an equilibrium firm 2 price strategy

then implies ˜Π1 is concave in σ [and a symmetric equilibrium implies σ = 1
2 is payoff

maximising]. However worker heterogeneity implies ˜Π1 is never concave in σL, σH . Each

firms’ best response implies a corner solution where worker search is perfectly directed.

The issue is how do the firms do this?

For ease of exposition, we restrict attention to equilibria where both firms make strictly

positive expected profit.9 Anticipating that the visit decisions of the two workers are

polarized in equilibrium, suppose in equilibrium the high productivity worker visits firm

1 and the low productivity worker visits firm 2; i.e. σH = 1 and σL = 0. A strictly positive
9Lemma 2 implies a possible equilibrium is σx ∈ {0, 1} and the other σ−x ∈ (0, 1) [i.e. at most one

worker mixes]. But (3) implies this outcome is a (weak) best response for both firms only if one firm

makes zero profit [the one which worker x never visits]. Restricting attention to strictly positive profit

equilibria implies only perfectly polarised equilibria exist; i.e. (σH , σL) is either (1, 0) or (0, 1).

12



profit equilibrium then requires π′ ∈ (0, QH ] and π ∈ (0, QL] (otherwise the respective

workers walk away).

Given firm 2’s price strategy (π, uL, uH), it can be shown there is a continuum of best

responses (π′, u′L, u′H) for firm 1, but that set of best responses imply the same [subgame]

visit probabilities σH and σL.10 The following Lemma identifies necessary and sufficient

conditions on (π, uL, uH) so that a best response by firm 1 implies (σH , σL) = (1, 0) in

the resulting subgame.

Lemma 3 Given π ∈ (0, QL] and uL, uH ≥ 0, necessary and sufficient conditions on

(π, uL, uH) so that (i) (σH , σL) = (1, 0) is consistent with a best response by firm 1, and

(ii) firm 1 makes strictly positive profits, are

(R1) QH − uH > 0,

(R2) uH − uL ≤ QH −QL,

(R3) 2π ≤ QH + QL − uH .

Further, given (R1)− (R3), firm 1’s best response implies

π′ = QH − uH , u′L ≤ QL − π,

and generates expected payoff QH − uH .

Proof. In Appendix.

Given firm 2’s strategy satisfies (R1) − (R3), firm 1’s best response induces equilibrium

visit strategies (σH , σL) = (1, 0). Firm 1 can do this by announcing

π′ = QH − uH − ε, u′L ≤ QL − π − ε, u′H large

where ε > 0 (but small). This price strategy sets a sufficiently low job fee π′ and suf-

ficiently large sideoffer u′H that worker H ′s strictly dominant strategy is to visit firm 1.

Sideoffer u′L < QL − π then implies worker L′s optimal strategy is to visit firm 2 [and
10See Coles and Eeckhout (1999) for a complete discussion. Given (π, uL, uH), then for any strategy

(π′, u′L, u′H) which implies both σL, σH ∈ (0, 1), firm 1 can increase both u′L, u′H by some amount ε,

and then increase its fee π′ by some compensating amount θε so that the worker’s expected payoffs are

unchanged. This variation does not change the equilibrium visit strategies, and risk neutrality implies

the firm makes the same expected profit. Hence there is a continuum of best responses which can be

indexed by ε. However each best response implies the same visit probabilities σL, σH .
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gets the job at price π ≤ QL]. In this way, firm 1 obtains payoff π′ = QH − uH − ε and

worker H obtains payoff QH−π′ = uH +ε. Note that this strategy undercuts ‘by a penny’

worker H ′s outside option, which is to visit firm 2 and obtain uH . Of course existence of

an equilibrium will need a suitable tie-breaking assumption so that firm 1 can set ε = 0

and worker H still visits firm 1 [and worker L visits firm 2].

(R3) is a competition condition. If (R3) does not hold, firm 1’s best response is to poach

both workers by offering u′H = QH −π and u′L = QL−π.11 That strategy would give firm

1 a payoff of 2π −QL and (R3) is necessary to ensure this does not exceed QH − uH . Of

course in equilibrium, firm 2 will set π sufficiently small [satisfying (R3)] to deter firm 1

from poaching both workers. In this sense (R3) describes price competition, where each

firm wishes to attract at least one worker.

(R2) is a coordination condition. It guarantees that firm 1 is better off attracting worker

H (with payoff QH − uH) rather than worker L (with payoff QL − uL). (R2) determines

which worker firm 1 will choose to attract. When firm 2 announces uH − uL < QH −QL,

we shall refer to this strategy as being ‘weak’ - it invites firm 1 to attract the high

productivity worker. Conversely announcing uH − uL > QH − QL is called ‘tough’ - it

invites firm 1 to attract the low productivity worker.

We now repeat the analysis to obtain conditions where firm 2’s best response is to attract

the low productivity worker only.

Lemma 4 Given π′ ∈ (0, QH ] and u′L, u′H ≥ 0, necessary and sufficient conditions on

(π′, u′L, u′H) so that (i) (σH , σL) = (1, 0) is consistent with a best response by firm 2, and

(ii) firm 2 makes strictly positive profits, are

(R1′) QL − u′L > 0,

(R2′) u′H − u′L ≥ QH −QL,

(R3′) 2π′ ≤ 2QL − u′L.

Given (R1′)− (R3′), firm 2’s best response implies

π = QL − u′L and uH ≤ QH − π′

which generates payoff QL − uL.
11By also setting π′ < QL−uL, σL = 1 is a dominant strategy for worker L, and σH = 1 then describes

a Nash equilibrium in visit strategies.
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Proof. In Appendix.

If firm 1 plays tough [i.e. (R2′) holds] and announces a sufficiently low job fee π′ [satisfying

(R3′)] then firm 2’s best response is to attract worker L using the above price strategy

[with uL large to ensure σL = 0 is a dominant strategy].

Using Lemmas 3 and 4, it is now straightforward to describe (perfect) Nash equilibria

where (σH , σL) = (1, 0) in the resulting subgame. Formally, existence requires the tie-

breaking assumptions that if indifferent to visiting a firm, worker H visits firm 1 and

worker L visits firm 2. The main feature however is that there is a continuum of such

equilibria. We illustrate this with an example.

An equilibrium with (σH , σL) = (1, 0) exists where firm 1 posts

π′ =
1
2
QL, u′L = 0.9QL and any u′H > QH − 0.1QL.

This offer is competitive [i.e. satisfies (R3′) - π′ is sufficiently small that firm 2’s best

response is not to attract both workers] and is ‘tough’ [i.e. satisfies (R2′) and so firm

2’s best response is to attract worker L]. It also makes a rather extravagant sideoffer

u′L = 0.9QL to worker L.

As this price strategy satisfies (R1′)− (R3′), firm 2’s best response implies π = 0.1QL (by

Lemma 4). Note that the extravagant sideoffer u′L of firm 1 forces firm 2 to set a very low

job fee. Of course equilibrium requires that firm 1’s strategy has to be a best response to

firm 2’s strategy. Lemma 3 therefore requires firm 2 posts uH = QH − 1
2Q

L. As long as

uL is large enough (i.e. firm 2 plays “weak”), then the above strategy for firm 1 and

π = 0.1QL, uH = QH − 1
2
QL and uL large enough,

describe a perfect Nash equilibrium with (σH , σL) = (1, 0). Note firm 1 obtains equilibrium

payoff 1
2Q

L and firm 2 makes profit 0.1QL.12

This example reveals the source of multiplicity - the sideoffers u′L, uH determine the equi-

librium job fees π, π′, but the sideoffers themselves are not uniquely determined. In

particular given (R1)− (R3), firm 1’s best response implies

π′ =
1
2
QL, u′L ≤ 0.9QL,

12Note that though sellers are identical, they do not necessarily receive the same profits as we have not

imposed symmetric pricing strategies.
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where the fee π′ is well determined, but the choice of u′L only requires that it is sufficiently

low that it does not attract worker L. However equilibrium requires that firm 1 offers the

highest possible value of u′L consistent with not attracting worker L. Furthermore, firm 1

must then post an even higher sideoffer u′H to guarantee ‘tough’. It is not clear why firm

1 should do this. Given firm 2’s strategy satisfies (R3), firm 1 does not wish to attract

both workers and such large sideoffers u′L, u′H appear unreasonable. Indeed if worker L

were to deviate and visit firm 1, firm 1 would realise a very large loss.

Such generous sideoffers are weakly dominated by posting less generous ones. This source

of multiplicity is well known in the game theory literature and the concept of trembling

hand perfection is typically used as the appropriate equilibrium refinement.13 In partic-

ular, if there is a small (vanishing) probability that worker L will deviate (i.e. a tremble

is possible), then such generous sideoffers are strictly dominated and the equilibrium

described above will not survive this refinement. However, as Bernheim and Whinston

(1986a) argue, adopting that approach in this context imposes severe difficulties. We

therefore adopt the refinement used in the common agency literature, that of truthful

equilibrium. This requires that if a firm makes sideoffers u′L, u′H > 0 then the firm’s profit,

should it succeed in attracting both workers, must be no lower than equilibrium profit.

Definition 5 (Truthful Nash Equilibrium)

A configuration {(π′, u′L, u′H), (π, uL, uH), (σH , σL) = (1, 0)} is a Truthful Nash Equilib-

rium if and only if it is a Nash equilibrium and satisfies:

(T1) QH − u′L − u′H ≥ π′,

(T2) QH − uL − uH ≥ π.

The restrictions (T1),(T2) imply that when it is privately optimal to attract only one

worker, the sideoffers (uH , uL) which bid for both workers cannot be so large that profits

would fall should both workers apply.

Theorem 6 (Heterogeneous Buyers) A Truthful Nash Equilibrium with (σH , σL) =

(1, 0) exists, is unique and implies (π′, u′L, u′H) = (π, uL, uH) = (QL, 0, QH −QL).

Proof. In Appendix.
13For example the Bertrand pricing game where firms have heterogeneous marginal costs.
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A Truthful Nash Equilibrium in direct mechanisms is consistent with both firms posting

second price sealed bid auctions with reserve price QL. If one worker applies, the worker

is employed at job fee QL, while if both apply, an auction implies worker H gets the job

but must pay job fee QL [which can be interpreted as the equilibrium bid of worker L,

though see Section 6 below]. However, note this outcome does not satisfactorily resolve

the coordination problem. Neither firm plays strictly tough nor strictly weak and it is

the required tie-breaking assumption for existence of equilibrium which coordinates the

workers strategies. Indeed, the same pricing strategies and the converse tie breaking

assumption implies a Truthful Nash Equilibrium with σL = 1, σH = 0. We now show how

firm heterogeneity resolves this coordination problem and so provide new insights into the

assignment problem.

5 Heterogeneous Firms and Workers

Again use x ∈ {L,H} to index the respective workers, but with heterogeneous firms it

is now useful to index the firms by y ∈ {L,H}. We denote output Q(x, y) = Qxy > 0,

where the first superscript refers to the worker’s type, the second to the firm’s type. It

is assumed that QHH > QLL [so that we can refer to H types as being more productive]

and that types are strict complements (i.e. Q(x, y) is supermodular)

QHH + QLL > QHL + QLH . (4)

Hence the socially efficient allocation is that worker x matches with firm y = x, an

outcome typically referred to as positive assortative matching.

Given the results of the previous section, it should not be surprising that the firms’ best

responses again perfectly coordinate the worker’s visit decisions. But this time [Truthful

Nash] Equilibrium coordinates the firms’ pricing strategies. As in Theorem 6, firm L still

posts a job auction - a second price sealed bid auction with reserve price π = QLL. When

both workers apply to firm L, their expected payoffs are uH = QHL − QLL, uL = 0. But

(4) implies uH − uL < QHH − QLH ; firm L′s job auction is strictly weak and firm H’s

strict best response is to attract worker H. Equilibrium guarantees positive assortative

matching.
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The following establishes this insight formally. As the argument is the same as before,

we only sketch details. Let σH , σL denote the workers’ visit strategies, where σx is the

probability that worker x visits firm H. Let (π′, u′L, u′H) denote the mechanism posted by

firm H, and (π, uL, uH) denote the mechanism posted by firm L. As before only consider

strictly positive profit equilibria, where a little work establishes that each firm’s best

response implies σH , σL ∈ {0, 1} in the subgame. The intuition is as before - each firm’s

best response coordinates the visit strategies of each worker. Also, only consider Truthful

Nash Equilibria which now require

(T3) QHH − u′L − u′H ≥ π′

(T4) QHL − uL − uH ≥ π,

where the interpretation is the same as before.

Theorem 7 Given (4), a Truthful Nash Equilibrium with σH = 1, σL = 0 exists, is

unique and implies

π = QLL

π′ = QLL + [QHH −QHL],

u′H = uH = QHL −QLL, u′L = uL = 0

Proof. In Appendix.

As described above, firm L competes for the high productivity worker by offering surplus

uH = QHL−QLL should both workers apply. This can be interpreted as a job auction with

reserve price QLL. Such competition forces firm H to lower its job fee π′ [as described

in the Theorem] to attract worker H. However, unlike Theorem 6, the firm strategies

described in Theorem 7 are strictly coordinated. The relevant coordination condition

(R2) which implies a weak strategy by firm L is

(R2) uH − uL ≤ QHH −QLH .

As firm L sets uH − uL = QHL −QLL, (4) implies that (R2) holds with strict inequality,

i.e. firm L plays strictly weak. Hence firm H strictly prefers to attract worker H. Indeed,

note that unlike Theorem (6), (σH , σL) = (1, 0) is a dominant strategy equilibrium should

both firms shave their reserve prices π′, π by a ‘penny’.
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Theorem 8 Given (4), a Truthful Nash equilibrium with σH = 0, σL = 1 does not exist.

Proof. In Appendix.

Together Theorems 7 and 8 imply that (4) and the restriction to Truthful Nash Equilibria

implies the firm’s pricing strategies are perfectly coordinated. The low productivity firm

plays strictly weak and attracts the low productivity worker. That firm also competes for

the high productivity worker by posting a job auction, but firm H matches the implied

sideoffer to attract the high productivity worker. These price strategies then perfectly

direct the workers’ search strategies and guarantees positive assortative matching. Given

these insights we can now generalise to the N firm, N worker case.

6 The N ×N Case

We now consider the general assignment problem with N differentiated firms and workers,

where in the first stage of the game each firm simultaneously posts a direct mechanism,

and in the second stage each worker chooses simultaneously which firm to visit. Clearly

this case is much more complicated than the 2 × 2 case. Although we believe the equi-

librium described below is the unique Truthful Nash Equilibrium, we can only establish

that it describes such an equilibrium. Nevertheless this approach confirms how positive

assortative matching arises as the outcome of a Truthful Nash Equilibrium with compet-

ing direct mechanisms. The underlying insight is that each firm essentially advertises a

single price - a reservation job fee - and then constructs a mechanism which implies the

most qualified worker who applies gets the job, and that worker retains the entire surplus

[output less the firm’s stated job fee]. Firms do not advertise job auctions.

Suppose there are N workers indexed by type i with productivities xi satisfying x1 < x2 <

x3..... < xN and N firms indexed by type j and productivities yj satisfying y1 < y2..... <

yN . Production between worker i and firm j is denoted Q(xi, yj) where Q(x1, y1) > 0, is

strictly increasing in both arguments and strictly supermodular:

Q(xi, yi) + Q(xj, yj) > Q(xi, yj) + Q(xj, yi) for all i and j 6= i.

Each firm j simultaneously advertises a direct mechanism. Given those advertisements,

each worker simultaneously chooses which firm to visit. Let σij denote the probability

that worker i visits firm j. As before we wish to find a Truthful Nash equilibrium.
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Let u∗i denote worker i’s expected payoff, and π∗j be firm j’s expected payoff in a Truthful

Nash equilibrium. We only consider equilibria where positive assortative matching de-

scribes the final equilibrium allocation; that σii = 1 for all i, and σij for all i 6= j. This

implies that equilibrium payoffs satisfy

π∗i = Q(xi, yi)− u∗i , for all i. (5)

The 2× 2 case suggests that payoffs might be determined by competition in second price

sealed bid auctions; that is

u∗i = Q(xi, yi−1)−Q(xi−1, yi−1),

where worker i’s outside option is to visit firm i − 1 and obtain the job according to a

second price job auction. That result does not extend to the NxN case. The equations

above would imply u∗i+1 + π∗i = Q(xi+1, yi) − u∗i , and as u∗i > 0 for i > 1 we would then

obtain u∗i+1 + π∗i < Q(xi+1, yi) for such i. Hence competition in job auctions would imply

a gain to trade exists between each worker i + 1 and firm i (for i > 1). Not surprisingly,

competition in direct mechanisms bids such surpluses away. The appropriate insight is

that a Truthful Nash Equilibrium with competition in direct mechanisms implies Bertrand

competition.

A Truthful Nash Equilibrium will find that each firm j’s direct mechanism bids compet-

itively for worker j + 1. The restriction to truthful strategies constrains firm j’s outside

offer “uH” for worker j + 1 to the point where firm j is just indifferent to attracting that

worker. As firm j + 1 matches that offer in equilibrium, worker j + 1’s equilibrium payoff

satisfies

u∗j+1 = Q(xj+1, yj)− π∗j . (6)

For existence of equilibrium we shall need the formal tie breaking assumption that if

worker j + 1 is indifferent to visiting firm j + 1 or j then the worker chooses to visit firm

j + 1.

The (candidate) equilibrium payoffs are now defined recursively by (5) and (6), with

starting value u∗1 = 0 [where truthful strategies imply worker 1 receives no outside bids and

so firm 1 extracts full surplus]. Note that given u∗i , (5) determines firm i’s equilibrium profit

π∗i and (6) then determines u∗i+1 and so on. Most importantly, these payoffs satisfy what
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is defined as a “stable outcome” in the literature on the assignment game [see Koopmans

and Beckmann (1957), Shapley and Shubik (1972), Roth and Sotomayor (1990)]. Strict

supermodularity implies uniqueness. The firms’ profits satisfy

π∗j = max
i

[Q(xi, yj)− u∗i ]

and there is no gain to trade between firm j and any other worker i 6= j, and of course

u∗i = max
j

[Q(xi, yj)− π∗j ].

Given these (candidate) equilibrium payoffs, we now construct the equilibrium direct

mechanisms. As positive assortative matching implies each firm j receives exactly one

applicant in equilibrium, then this candidate equilibrium requires each firm j specifies the

fee π = π∗j if one worker shows.

Now consider the equilibrium direct mechanism should 2 workers apply. As firm j will

use this mechanism to compete for worker j + 1, suppose that if two workers apply, firm

j believes they are workers j and j + 1. An equilibrium direct mechanism corresponds

to the one previously defined by rules (A1)-(A3), where each applicant is asked to report

m ∈ {L,H}, and allocations and prices are determined using QH ≡ Q(xj+1, yj), QL ≡
Q(xj, yj), uL = 0 and uH = u∗j+1; i.e. firm j bids uH equal to worker j + 1′s equilibrium

payoff. Note that if the message pair is (L,H), allocation rule (A3) and (6) imply the job

is allocated to the worker reporting m = H at fee π∗j ; i.e. the firm continues to extract

its equilibrium payoff [and so this mechanism is truthful]. Also note that if the message

pair is (H, H) the job is randomly allocated at a fee 1
2 [Q(xj+1, yj) + Q(xj, yj)] which is

strictly greater than π∗j . Hence the job fee is increasing in the number of workers who

report m = H, and so whenever two workers apply, the job is either filled with a fee no

lower than π∗j , or is not filled at all. The aim now is to show that this set of mechanisms

and positive assortative matching describes a Truthful Nash Equilibrium.

Theorem 9 A Truthful Nash equilibrium exists where each firm j uses the direct mech-

anism described above, and there is positive assortative matching.

Proof. There are two steps. The first step is to show that given these mechanisms,

σii = 1 for all i describes an equilibrium in visit strategies. The second step is to show
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that given all firms post the above mechanisms, no firm j can increase profit by posting

a different one.

Step 1: Suppose all workers i 6= k choose σii = 1 and consider the optimal strategy of

worker k given those strategies and the above mechanisms. By visiting any other firm

j 6= k, the direct mechanism [given two workers apply] implies she can get the job at a

fee no lower than π∗j . As these prices are consistent with a stable outcome, σkk = 1 is

privately optimal for all k.

Step 2 : Suppose all firms j 6= k post the above mechanisms and suppose firm k deviates

by posting π > π∗k; she raises her job fee in the event of only one worker applying. Then

regardless of whatever else she specifies in her mechanism, the corresponding subgame

implies the workers’ equilibrium visit strategies are (a) σii = 1 for i > k, (b) σi,i−1 = 1 for

i ≤ k and i > 1, (c) worker 1 walks away.14

To see why, note that these strategies imply the deviating firm k does not get an applicant

[σik = 0 for all i] while all other firms attract one worker. Given this set of visit strategies,

we now show that no worker has an incentive to deviate, and so (a)-(c) describes a

[subgame] equilibrium.

First consider (a) - those workers i > k. By visiting firm i they obtain payoff u∗i . By

deviating and visiting any firm j 6= i, the posted mechanisms imply worker i expects to

pay a fee no lower than π∗j for the job at that firm. As the set of equilibrium payoffs

describe a stable outcome, it follows that σii = 1 is privately optimal for these workers.

Hence (a). Now consider worker i = k. As firm k has raised her job fee π > π∗k, worker

k now visits firm k − 1. As visit strategies (a)-(c) imply she is the only applicant, she

obtains the job at fee π∗k−1 and by (6), obtains her original equilibrium payoff u∗k. Worker

i = k − 1 now realises that worker k will apply for the job at firm k − 1. Further, worker

k’s (iterated) dominant strategy is to report m = H in firm k’s 2-person message game.

As allocation rule (A1) implies getting the job at firm k − 1 would now involve paying

a job fee which exceeds π∗k−1, worker k − 1’s optimal strategy is instead to apply to firm

k − 2 and so obtain her original equilibrium payoff u∗k−1. The argument continues in the
14Note if worker 1 visits any firm, her [iterated] dominant strategy is to report m = L, i.e. this worker

automatically realises a zero payoff. It is more convenient to assume this worker does not participate at

all, and simply walks away.
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same way where all workers i < k apply to firm i− 1, and each has an iterated dominant

strategy to report m = H in firm i− 1’s 2-person message game. Of course worker i = 1

has nowhere else to go. Hence (a)− (c) describes an equilibrium in visit strategies. The

critical feature is that all workers obtain their original expected payoffs u∗i .

The central feature is that these mechanisms perfectly coordinate the workers’ visit strate-

gies. In particular, given this (coordinated) best response in the subgame by workers, each

worker i is guaranteed a payoff of at least u∗i . Hence to attract at least one worker with

positive probability, firm k must set job fee π ≤ π∗k and a mechanism which offers an

expected payoff of at least u∗i for some worker i. But as these payoffs describe a stable

outcome, an optimal mechanism is to attract worker k with a job fee π = π∗k. Hence

the stated mechanism is an optimal strategy and we have identified a Truthful Nash

equilibrium.

7 Conclusion

The paper has shown that when workers are heterogeneous, and firms compete in di-

rect mechanisms, worker search is perfectly directed. Similar in spirit to Moen (1997),

equilibrium implies different types do not crowd out each other’s matching probabili-

ties. However unlike Moen (1997), here such coordination does not depend on competing

market-makers. Instead, firms post reasonably rich price mechanisms and equilibrium

implies worker search is perfectly coordinated. Of course, coordination problems will re-

appear should there exist several workers of the same type. While the directed search

model is a useful way of thinking about market frictions within groups of identical work-

ers, our contribution is to establish that across heterogeneous agents, applicants will sort

themselves into those firms that correspond to the efficient allocation. Our theory predicts

that pools of applicants will be homogeneous in their ability.

With complementary inputs, and when attention is restricted to truthful strategies, equi-

librium implements the first best allocation - there is positive assortative matching and

prices are consistent with a stable outcome. The equilibrium terms of trade are akin to

Bertrand competition where each firm’s mechanism competes for the next more produc-

tive worker [relative to the one they actually succeed in hiring]. In equilibrium and in

reduced form, firm y posts a single job fee π∗(y) and promises to hire the most productive
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worker that applies with payoff w = Q(x, y) − π∗(y). Of course, to retain anonymity it

was assumed that the equilibrium mechanism could not condition on the worker’s type.

But if skills are fully verifiable, this mechanism reduces to advertising a wage schedule

wy(x) ≡ Q(x, y)− π∗(y) and a proviso that the most productive worker who applies will

be hired. For the example in section 1.1, each firm y might post a linear wage schedule

wy(x) = xy − 0.5y2, where a more productive firm posts a steeper wage schedule and a

smaller intercept. Such advertisements then perfectly direct worker search; each worker

x applies to firm y = x. Worker x does not apply to firm y′ > x as she won’t get the job,

and does not apply to firm y′ < x as the offered wage wy′(x) is lower than wy(x).

It has also been shown that in equilibrium, the only relevant wage-bids made by each firm

y, are those made for the equilibrium applicant x = y, and for the next more productive

worker x′ > x. Note that the continuum case considered earlier implies x′−x = 0. In that

case an even simpler equilibrium mechanism exists: each firm y simply announces a fixed

wage wy = Q(y, y)− π∗(y) and promises to hire the most productive worker that applies.

As before, these advertisements induce positive assortative matching and the arguments

presented in section 6 imply these advertisements are privately optimal.
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8 Appendix

Given π ≤ QL and uL, uH , u′L, u′H ≥ 0, a Nash equilibrium in visiting strategies σL, σH ∈
[0, 1] implies

if (1− σL) max[QH − π′, 0] + σLu′H > σL[QH − π] + (1− σL)uH then σH = 1

if (1− σL) max[QH − π′, 0] + σLu′H = σL[QH − π] + (1− σL)uH then σH ∈ [0, 1]

if (1− σL) max[QH − π′, 0] + σLu′H < σL[QH − π] + (1− σL)uH then σH = 0

if (1− σH) max[QL − π′, 0] + σHu′L > σH [QL − π] + (1− σH)uL then σL = 1

if (1− σH) max[QL − π′, 0] + σHu′L = σH [QL − π] + (1− σH)uL then σL ∈ [0, 1]

if (1− σH) max[QL − π′, 0] + σHu′L < σH [QL − π] + (1− σH)uL then σL = 0

where if only one worker visits firm 1, that worker x walks away and obtains a zero payoff

should the job fee π′ exceed Qx [and note π ≤ QL].

Proof of Lemma 3

Fix (π, uL, uH) satisfying π ≤ QL and uL, uH ≥ 0. We prove (R1) − (R3) are necessary

and sufficient conditions in turn.

(i) (R1)− (R3) are necessary.

First consider all those strategies (π′, u′L, u′H) which imply (σH , σL) = (1, 0) is a Nash

equilibrium. Given σL = 0, then σH = 1 requires max[QH − π′, 0] ≥ uH . Given σH = 1,

then σL = 0 requires u′L ≤ [QL−π]. This equilibrium outcome and strictly positive profit

also requires π′ ≤ QH [otherwise worker H walks away]. As uH ≥ 0, it now follows that

any best response by firm 1 which implies (σH , σL) = (1, 0) and which also generates

strictly positive profit implies π′ ≤ QH − uH , u′L ≤ QL − π and generates firm 1 profit

π′ ≤ QH − uH . We now consider (R1)-(R3) in turn.

(R1) is necessary, otherwise if a best response exists which generates (σH , σL) = (1, 0), it

implies profit π′ ≤ QH − uH ≤ 0 which contradicts strictly positive profit.

(R2) is necessary, otherwise firm 1 might post

π′ = QL − uL − ε, u′H ≤ QH − π, u′L large
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where ε > 0. This strategy implies (σH , σL) = (0, 1) is an iterated dominant strategy

equilibrium and generates profit QL − uL − ε. If (R2) does not hold, this payoff strictly

dominates QH − uH for ε small enough, which contradicts (σH , σL) = (1, 0) being consis-

tent with a best response by firm 1.

(R3) is necessary, otherwise firm 1 might post

π′ small enough, u′L = QL − π − ε, u′H = QH − π − ε

where ε > 0. This strategy implies (σH , σL) = (1, 1) is a dominant strategy equilibrium

and generates profit QH − u′L − u′H = 2π − QL − 2ε. If (R3) does not hold, this payoff

strictly dominates QH −uH for ε small enough, which contradicts (σH , σL) = (1, 0) being

consistent with a best response by firm 1.

(ii) (R1)− (R3) are sufficient.

Consider the conditions determining σH in a Nash equilibrium [described above]. Multi-

plying both sides by σH , these conditions imply σH ∈ [0, 1] and

σHσLu′H ≥ σH
[

σL[QH − π] + (1− σL)uH − (1− σL) max[QH − π′, 0]
]

(7)

Similarly, the conditions determining σL imply σL ∈ [0, 1] and

σLσHu′L ≥ σL
[

σH [QL − π] + (1− σH)uL − (1− σH) max[QL − π′, 0]
]

(8)

Given (R1)-(R3) we now show that (σH , σL) = (1, 0) is consistent with a best response

by firm 1.

First note that the strategy described in the lemma implies (σH , σL) = (1, 0) is a Nash

equilibrium and generates profit QH − uH > 0. We now show this strategy is profit

maximising by considering all other possible strategies. We do this by considering three

separate cases.

(a) Consider all those strategies satisfying π′ ≤ QL. In this case, both workers will accept

employment if only one worker shows, and firm 1’s expected payoff is then

Π1 = [σL(1− σH) + σH(1− σL)] π′ + σLσH
[

QH − u′H − u′L
]

.

Using (7),(8) to substitute out u′L, u′H and rearranging implies

Π1 ≤ [QH − uH ]− [1− σH − σL + σLσH ][QH − uH ]

−σLσH [QL + QH − uH − 2π]

−σL(1− σH)[QH − uH −QL + uL].
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Also note that 1 − σH − σL + σLσH ≥ 0 for all σH , σL ∈ [0, 1]. Hence (R1) − (R3) and

σH , σL ∈ [0, 1] imply Π1 ≤ QH −uH , and so all strategies with π′ ≤ QL are dominated by

the one described in the lemma.

(b) Consider all those strategies satisfying QL < π′ ≤ QH . In this case, worker L walks

away if the sole applicant, and firm 1’s expected payoff is

Π1 = σH
[

(1− σL)π′ + σL(QH − u′H − u′L)
]

.

Using (7),(8) to substitute out u′L, u′H and rearranging implies

Π1 ≤ σH [QH − uH ]− σLσH
[

QH + QL − uH − 2π
]

− σL(1− σH)uL

Hence (R1)− (R3), σH , σL ∈ [0, 1] and uL ≥ 0 imply Π1 ≤ [QH − uH ] as required.

(c) Consider all those strategies satisfying π′ > QH . This time firm 1’s expected payoff is

Π1 = σLσH(QH − u′H − u′L).

Using (7),(8) to substitute out u′L, u′H and rearranging implies

Π1 ≤ σLσH [QH − uH ]− σLσH
[

QH + QL − uH − 2π
]

− σH(1− σL)uH − σL(1− σH)uL

Hence (R1)-(R3), σH , σL ∈ [0, 1] and uL, uH ≥ 0 imply Π1 ≤ [QH − uH ] as required.

Hence (R1)-(R3) are sufficient to imply the strategy described in the lemma is a best

response by firm 1 and implies (σH , σL) = (1, 0) is a Nash equilibrium in the resulting

subgame.

This completes the proof of Lemma 3.�

Proof of Lemma 4

Note that strictly positive profit for firm 2, and a best response by firm 2 which is con-

sistent with (σH , σL) = (1, 0), requires π ≤ QL [otherwise worker L walks away]. Given

π ≤ QL, the conditions stated at the start of the Appendix describe any Nash equilibrium

in visit strategies (σH , σL).

Now fix (π′, u′L, u′H) with π′ ≤ QH and u′L, u′H ≥ 0. Proving the lemma requires 2 steps.

Step 1 : π′ ≤ QL is necessary.
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Proof of Step 1: Using the same argument demonstrated in the proof of lemma 3, it

follows that any strategy which implies (σH , σL) = (1, 0) is a Nash equilibrium in visit

strategies and generates strictly positive profit, implies firm 2 payoff π ≤ QL − u′L.

Now suppose QL < π′ ≤ QH . By posting

π small enough, uL = ε, uH = QH − π′ + ε

where ε > 0, this strategy implies (σH , σL) = (1, 1) is a dominant strategy equilibrium and

generates payoff of π′ − 2ε. But π′ > QL and ε small enough implies this payoff exceeds

QL − u′L, which contradicts that (σH , σL) = (1, 0) is consistent with a best response by

firm 2.

Step 2 : As π′ ≤ QL is necessary for (σH , σL) = (1, 0) being consistent with a best

response by firm 2, the proof which established lemma 3 is now easily adapted to prove

lemma 4.�

Proof of Theorem 6

Any strictly positive profit Nash equilibrium with (σH , σL) = (1, 0) in the subgame re-

quires that this outcome is consistent with both firms playing best responses. By lemmas

3,4 those best responses require (R1)− (R3), (R1′)− (R3′) and imply

π′ = QH − uH , π = QL − u′L. (9)

Using (9) to substitute out π, π′ in (R1)− (R3), (R1′)− (R3′), we obtain the equilibrium

constraints:

(R1) : uH < QH , (R2) : uH − uL ≤ QH −QL, (R3) : uH − 2u′L ≤ QH −QL

(R1′) : u′L < QL, (R2′) : u′H − u′L ≥ QH −QL, (R3′) : 2uH − u′L ≥ 2[QH −QL].

where u′H , u′L, uH , uL ≥ 0. Also use (9) to substitute out π, π′ in (T1), (T2) to obtain the

truthfulness conditions:

u′H − uH ≤ −u′L (10)

uL + uH − u′L ≤ QH −QL. (11)

The problem now is to solve these conditions for u′H , u′L, uH , uL.
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Note (R2) and (R2′) imply u′H − uH ≥ u′L − uL. With (10) this implies u′L − uL ≤ −u′L,

and so uL ≥ 2u′L.

Subtracting (R3) from (R3′) implies uH + u′L ≥ QH − QL. With (11) this implies uL +

uH − u′L ≤ uH + u′L, and so uL ≤ 2u′L. Hence uL = 2u′L.

We can now substitute out uL. (R2) becomes uH − 2u′L ≤ QH − QL, and (11) becomes

uH + u′L ≤ QH −QL. Adding these two inequalities implies 2uH − u′L ≤ 2[QH −QL], and

with (R3′) this now implies

2uH = u′L + 2[QH −QL].

Using these solutions to substitute out uL, uH in (11) now implies u′L ≤ 0. Hence u′L = 0

and so uL = 0 and uH = QH − QL. (10) and (R2′) now imply u′H = QH − QL. Direct

inspection shows that these values satisfy all the above conditions, which completes the

proof of the Theorem.�

Proof of Theorem 7

As the structure of the proof is identical to the proof of Theorem 6 we only sketch details.

First we must obtain the conditions analogous to lemmas 3 and 4.

Lemma A2 : Given π ∈ (0, QLL], necessary and sufficient conditions on (π, uL, uH) so

that (i) (σH , σL) = (1, 0) is consistent with a best response by firm H, and (ii) firm H

makes strictly positive profits, are:

(R1) QHH − uH > 0

(R2) uH − uL ≤ QHH −QLH

(R3) 2π ≤ QHL + QLL − uH

Firm H’s best response implies

π′ = QHH − uH and u′L ≤ QLL − π.

Proof. The argument used to prove lemma 3 applies directly. Note (R3) arises as firm H

can poach both workers by offering u′L = QLL− π, u′H = QHL− π, and the corresponding

profit QHH − u′H − u′L cannot exceed QHH − uH . �
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Lemma A3 : Given π′ ∈ (0, QHH ], necessary and sufficient conditions on (π′, u′L, u′H)

so that (i) (σH , σL) = (1, 0) is consistent with a best response by firm L, and (ii) firm L

makes strictly positive profits, are:

(R1′) QLL − u′L > 0

(R2′) u′H − u′L ≥ QHL −QLL,

(R3′) π′ −max[QLH − π′, 0] + u′L ≤ QHH + QLL −QHL.

Firm L′s best response implies

π = QLL − u′L and uH ≤ QHH − π′.

Proof. Is straightforward by adapting the proof of lemmas 3,4. (R3′) arises because

firm L can poach both workers by posting uH = QHH − π′ and uL = max[QLH − π′, 0]

(where worker L walks away from firm H if π′ > QLH) and the corresponding profit

QHL − uH − uL cannot exceed QLL − u′L.�

Any strictly positive profit Nash equilibrium with (σH , σL) = (1, 0) in the subgame re-

quires that this outcome is consistent with both firms playing best responses. Lemmas

A2,A3 imply

π′ = QHH − uH , π = QLL − u′L. (12)

Using (12) to substitute out π, π′ in (R1)− (R3), (R1′)− (R3′) in lemmas A2,A3 implies

equilibrium constraints

(R1) uH < QHH , (R2) uH − uL ≤ QHH −QLH , (R3) uH − 2u′L ≤ QHL −QLL

(R1′) u′L < QLL, (R2′) u′H − u′L ≥ QHL −QLL,

(R3′) uH + max[uH −QHH + QLH , 0]− u′L ≥ QHL −QLL,

and (12) in (T3), (T4) implies truthfulness conditions

uH − u′L − u′H ≥ 0. (13)

uL + uH − u′L ≤ QHL −QLL. (14)

Again the problem is to solve these constraints for u′H , u′L, uH , uL ≥ 0.

Lemma A4 : A solution does not exist with uH ≥ QHH −QLH .
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Proof : By contradiction. Suppose uH ≥ QHH −QLH , and so (R3′) reduces to

(R3′) : 2uH − u′L ≥ QHH + QHL −QLH −QLL. (15)

Subtracting (R2′) from (R2) and using (13) implies 2u′L−uL ≤ QHH−QLH−QHL +QLL.

Subtracting (R3) from (15) implies uH + u′L ≥ QHH − QLH . With (14) it follows that

2u′L − uL ≥ QHH −QLH −QHL + QLL. Hence

uL = 2u′L − [QHH −QLH −QHL + QLL].

Adding (R2) and (14) gives 2uH − u′L ≤ QHH + QHL − QLH − QLL. (15) now implies

2uH − u′L = QHH + QHL −QLH −QLL.

Substituting out uL, uH in (14) implies u′L ≤ 1
3 [Q

HH −QHL−QLH −QLL]. But the above

solution for uL now implies uL ≤ −1
3 [Q

HH − QHL − QLH + QLL] and (4) implies the

required contradiction. This completes the proof of Lemma A4.�

Hence if a solution exists, it implies uH < QHH − QLH and (R3′) becomes uH − u′L ≥
QHL − QLL. (14) immediately implies uL = 0 and also that uH = u′L + QHL − QLL.

Adding (R2′) and (13) imply uH − 2u′L ≥ QHL − QLL. Substituting out uH , using the

solution given, now implies u′L ≤ 0. Hence u′L = 0. Finally (13) and (R2′) now imply

u′H = QHL − QLL. Given (4), direct inspection shows that these values satisfy all of the

above conditions, which completes the proof of the Theorem.�

Proof of Theorem 8

The methodology is identical to the proofs of Theorems 6 and 7. We sketch the essential

points.

Assuming an equilibrium with (σH , σL) = (0, 1) exists, then the usual argument implies

this is consistent as a best response for firm H if and only if : (R1) : QLH − uL > 0,

(R2) : uH − uL ≥ QHH −QLH , and (R3) : QHH −max[QHL − π, 0]−max[QLL − π, 0] ≤
QLH − uL. In that case firm H posts π′ = QLH − uL.

This outcome is also a best response for firm L if and only if (R1′): QHL − u′H > 0,

(R2′) : u′H − u′L ≤ QHL−QLL, and (R3′): QHL−max[QHH − π′, 0]−max[QLH − π′, 0] ≤
QHL − u′H . In that case, firm L posts π = QHL − u′H .
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Given π = QHL − u′H , a contradiction argument using (R3) and (4) implies u′H ≥ QHL −
QLL. Substituting out π in (R3) now implies

2u′H − uL ≥ QHH + QHL −QLH −QLL. (16)

Similarly, substituting out π′ = QLH − uL in (R3′) implies

u′H − 2uL ≤ QHH −QLH . (17)

Also truthful strategies requires

u′H + u′L − uL ≤ QHH −QLH , (18)

uH + uL − u′H ≤ 0. (19)

Again the problem is to solve these constraints for u′H , u′L, uH , uL ≥ 0. The Theorem is

established by proving no solution exists.

Subtracting (17) from (16) implies

u′H + uL ≥ QHL −QLL (20)

and subtracting (20) from (18) gives

u′L − 2uL ≤ QHH −QLH −QHL + QLL. (21)

Now (R2), (R2′) imply

uH − uL − u′H + u′L ≥ QHH −QHL −QLH + QLL. (22)

and subtracting (19) from (22) gives

u′L − 2uL ≥ QHH −QHL −QLH + QLL (23)

Hence (21) and (23) imply

u′L = 2uL + QHH −QHL −QLH + QLL (24)

Substituting out u′L in (22) using (24) gives

uH + uL − u′H ≥ 0 (25)
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Hence (25) and (19) imply

u′H = uH + uL (26)

Substituting out u′H in (20) using (26) gives uH + 2uL ≥ QHL − QLLwhile substituting

out u′L, u′H in (18) using (24) and (26) implies uH +2uL ≤ QHL−QLL. Hence uH +2uL =

QHL − QLL. Using (26) to substitute out u′H , and this latter condition to substitute out

uH , (16) now implies

uL ≤ −1
3
[QHH −QLH −QHL + QLL]

and (4) implies a solution with uL ≥ 0 cannot exist. This completes the proof of Theorem

8.�

33



References

[1] Acemoglu, Daron and Robert Shimer, “Efficient Unemployment Insurance”,

Journal of Political Economy 107, (1999a), 893-928.

[2] Acemoglu, Daron and Robert Shimer, ”Holdups and Efficiency with Search

Frictions”, International Economic Review 40, (1999b), 827-851.

[3] Bernheim, B. Douglas, and Michael Whinston, ”Menu Auctions, Resource

Allocation, and Economic Influence”, Quarterly Journal of Economics, 101(1),

(1986), 1-31.

[4] Bernheim, B. Douglas, and Michael Whinston, ”Common Agency”, Econo-

metrica, 54(4), (1986), 923-942.

[5] Biais, Bruno, David Martimort, and Jean-Charles Rochet, ”Competing

Mechanisms in a Common Value Environment”, Econometrica (1999) forthcoming.

[6] Burdett, Kenneth, Shouyong Shi and Randall Wright, ”Pricing with

Frictions”, mimeo University of Pennsylvania (2000).

[7] Burguet, Roberto and Josef Sakovics, ”Imperfect Competition in Auction

Design”, International Economic Review, 40(1), (1999), 231-247.

[8] Coles, Melvyn, and Jan Eeckhout, ”Heterogeneity as a Coordination Device”,

mimeo (1999).

[9] T. Koopmans and M. Beckmann, ”Assignment Problems and the Location of

Economic Activities”, Econometrica 25(1), (1957), 53-76.

[10] Lagos, Ricardo, “An Alternative Approach to Search Frictions“, Journal of Po-

litical Economy, (2000), forthcoming.

[11] McAfee, Preston, ‘Mechanism Design by Competing Sellers’, Econometrica, LXI

(1993), 1281-1312.

[12] Montgomery, James, “Equilibrium Wage Dispersion and Inter-Industry Wage

Differentials” Quarterly Journal of Economics, CVI (1991), 163-180.

34



[13] Moen, Espen, ”Competitive Search Equilibrium”, Journal of Political Economy,

105(2), (April 1997), 385-411.

[14] Peters, Michael, “Ex-Ante Price Offers in Matching Games : Non-Steady States”,

Econometrica, LIX (1991), 1425-1454.

[15] Peters, Michael and Sergei Severinov, “Competition among Sellers Who

Offer Auctions Instead of Prices”, Journal of Economic Theory, LXXV (1997), 141-

179.

[16] Roth, Alvin and Marilda Sotomayor, Two-sided Matching. A Study in Game

Theoretic Modelling and Analysis, (1990), Cambridge University Press, Cambridge.

[17] Shapley, Lloyd and Martin Shubik, ”The Assignment Game I: the Core”,

International Journal of Game Theory 1, (1972), 111-130.

[18] Shimer, Robert, and Lones Smith, “Assortative Matching and Search”, Econo-

metrica, 68(2), (2000), p 343-369.

[19] Shimer, Robert “Job Auctions”, mimeo Princeton University, (1999).

35


